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22.101 Applied Nuclear Physics (Fall 2006) 
Lecture 1 (9/6/06) 

Basic Nuclear Concepts 
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7th ed. 
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Physics Vade Mecum, H. L. Anderson, ed. (American Institute of Physics, New York, 

1081). 

P. Marmier and E. Sheldon, Physics of Nuclei and Particles (Academic Press, New York, 
1969), vol. 1. 

General Remarks: 

This subject treats foundational knowledge for all students in the Department of Nuclear 

Science and Engineering. Over the years 22.101 has evolved in the hands of several 

instructors, each of whom dealt with the subject contents in somewhat different fashions.  

Two topics, in particular, were not given the same treatment by the different faculty who 

have taught 22.101, quantum mechanics and the interaction of radiation with matter.  

There was also some difference in how much nuclear structure and nuclear models were 

taught from the perspective of a course on nuclear physics in a physics department. 

In the present version of 22.101 we intend to emphasize the nuclear concepts, as 

opposed to traditional nuclear physics, essential for understanding nuclear radiations and 

their interactions with matter.  The justification for is that we see our students as nuclear 

engineers rather than nuclear physicists.  Nuclear engineers work with all kinds of 

nuclear devices, from fission and fusion reactors to accelerators and detection systems.  

In all these complex systems nuclear radiations play a central role.  In generating nuclear 

radiations and using them for beneficial purposes, scientists and engineers must 

understand the properties of these radiations and how they interact with their 

surroundings. It is through the control of radiations interactions that we can develop new 

devices or optimize existing ones to make them more safe, powerful, durable, or 

economical.  This is the simple reason why radiation interaction is the essence of 22.101. 
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Because nuclear physics is a very large subject and in view of our focus on 

radiation interactions, we will not be covering some of the standard material on nuclear 

structure and models that would be normally treated in a physics course.  Students 

interested in these topics are encouraged to read up on your own.  We should also note 

that in 22.101 we will study the different types of reactions as single-collision 

phenomena, described through variouscross sections, and leave the accumulated effects 

of many collisions to later subjects (22.105 and 22.106).  Although we will not teach 

quantum mechanics by itself, it is used in several descriptions of nuclei, at a more 

introductory level than in 22.51 and 22.106. 

Nomenclature: 

X A  denotes a nuclide, a specific nucleus with Z number of protons (Z = atomicz 

number) and A number of nucleons (neutrons or protons).  The symbol of nucleus is X 

which is either a single letter as in uranium U, or two letters as in copper Cu or plutonium 

Pu. There is a one-to-one correspondence between Z and X, so that specifying both is 

actually redundant (but helpful since not everyone remembers the atomic number of all 

the elements).  The number of neutrons N of this nucleus is A – Z.  Often it is sufficient 

to specify only X and A, as in U235, if the nucleus is a familiar one (uranium is well 

known to have Z=92). The symbol A is called the mass number since knowing the 

number of nucleons one has an approximate idea of what is the mass of the particular 

nucleus. There exist several uranium nuclides with different mass numbers, such as U233, 

U235, and U238 . Nuclides with the same Z but different A are called isotopes. By the 

same token, nuclides with the same A but different Z are called isobars, and nuclides 

with same N but different Z are called isotones. Isomers are nuclides with the same Z 

and A in different excited states. For a compilation of the nuclides that are known, see 

the Table of Nuclides (Kaeri) for which a website is given in the References. 

We are, in principle, interested in all the elements up to Z = 94 (plutonium).  

There are about 20 more elements which are known, most with very short lifetimes; these 

are of interest mostly to nuclear physicists and chemists, but not so much to nuclear 

engineers. While each element can have several isotopes of significant abundance, not 
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all the elements are of equal interest to us in this class.  The number of nuclides we might 

encounter in our studies is probably no more than 20. 

A great deal is known about the properties of nuclides.  In addition to the Table of 

Nuclides, the student can consult the Table of Isotopes, cited in the References. It should 

be appreciated that the great interest in nuclear structure and reactions is not just for 

scientific knowledge alone; the fact that there are two applications that affects the welfare 

of our society – nuclear power and nuclear weapons – has everything to do with it.   

We begin our studies with a review of the most basic physical attributes of 

nuclides to provide motivation and a basis to introduce what we want to accomplish in 

this course (see the Lecture Outline). 

Basic Physical Attributes of Nuclides 

Nuclear Mass


We adopt the unified scale where the mass of C12 is exactly 12. On this scale, one mass 


unit 1 mu (C12 = 12) = M(C12)/12 = 1.660420 x 10-24 gm (= 931.478 Mev), where M(C12) 


is actual mass of the nuclide C12. Studies of atomic masses by mass spectrograph shows 


that a nuclide has a mass nearly equal to the mass number A times the proton mass.  


Three important rest mass values, in mass and energy units, to keep handy are: 


                                 mu  [M(C12) = 12] Mev 

electron 0.000548597 0.511006 

proton 1.0072766 938.256 

neutron 1.0086654 939.550 

Reason we care about the mass is that it is an indication of the stability of the nuclide. 

One sees this directly from E = Mc2, the higher the mass the higher the energy and the 

less stable is the nuclide (think of nuclide being in an excited state).  We will find that if a 

nuclide can lower its energy by undergoing disintegration, it will do so – this is the 

simple explanation of radioactivity.  Notice the proton is lighter than the neutron, 

suggesting the former is more stable than the latter.  Indeed, if the neutron is not bound in 
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a nucleus (that is, it is a free neutron) it will decay into a proton plus an electron (plus an 


antineutrino) with a half-life of about 13 min. 


Nuclear masses have been determined to quite high accuracy, precision of ~ 1 part in 108, 


by the methods of mass spectrography and energy measurements in nuclear reactions.  


Using the mass data alone we can get an idea of the stability of nuclides.  Define the mass 


defect as the difference between the actual mass of a nuclide and its mass number, ∆  = 


M – A; it is also called the “mass decrement”.  If we plot ∆  versus A, we get a curve 


sketched in Fig. 1. When ∆  < 0, it means that taking the individual nucleons when  


Fig. 1.  Variation of mass decrement (M-A) showing that nuclides with mass numbers in 

the range ~ (20-180) should be stable. 

they are separated far from each other to make the nucleus gives a product whose mass is 

lighter than the sum of the components.  This can only happen if energy is given off 

during the formation.  In other words, to reach a final state (the product nuclide) with 

smaller mass than the initial state (collection of individual nucleons) one must take away 

some energy (mass).  It also follows that the final state will be more stable than the initial 

state, since energy must be put back in if one wants to reverse the process to go from the 

nuclide to the individual nucleons. We therefore expect that ∆  < 0 means the nuclide is 

stable. Conversely, ∆  > 0 means the nuclide is unstable.  Our sketch shows that very 

light elements (A < 20) and heavy elements (A > 180) are not stable, and that maximum 

stability occurs around A ~ 50. We will return to discuss this behavior further when we 

consider the nuclear binding energy later.  

Nuclear Size 
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According to Thomson’s “electron” model of the nucleus (~ 1900), the size of a nucleus 

should be about an Angstrom, 10-8 cm. We now know this picture is wrong.  The correct 

nuclear size was determined by Rutherford (~ 1911) in his atomic nucleus hypothesis 

which put the size at about 10-12 cm.  Nuclear radius is not well defined, strictly speaking, 

because any result of a measurement depends on the phenomenon involved (different 

experiments give different results).  On the other hand, all the results agree qualitatively 

and to some extent also quantitatively.  Roughly speaking, we will take the nuclear radius 

to vary with the 1/3 power of the mass number, R = roA1/3, with ro ~ 1.2 – 1.4 x 10-13 cm.  

The lower value of the coefficient ro comes from electron scattering which probes the 

charge distribution of the nucleus, while the higher value comes from nuclear scattering 

which probes the range of nuclear force. Since nuclear radii have magnitudes of the 

order of 10-13 cm, it is conventional to adopt a length unit called Fermi (F), F ≡  10-13 cm. 

Because of particle-wave duality we associate a wavelength with the momentum of a 

particle. The corresponding wave is called the deBroglie wave. Before discussing the 

connection between a wave property, the wavelength, and a particle property, the 

momentum, let us first set down the relativistic kinematic relations between mass, 

momentum and energy of a particle with arbitrary velocity.  Consider a particle with rest 

mass mo moving with velocity v. There are two expressions we can write down for the 

total energy E of this particle.  One is the sum of its kinetic energy Ekin and its rest mass 

energy, Eo = moc 2 , 

Etot = Ekin + Eo = m(v)c 2     (1.1)  

The second equality introduces the relativistic mass m(v) which depends on its velocity, 

m(v) = γmo , γ = (1− v 2 / c 2 )−1/ 2 (1.2) 

where γ  is the Einstein factor. To understand (1.2) one should look into the Lorentz 

transformation and the special theory of relativity in any text.  Eq.(1.1) is a first-order 

relation for the total energy. Another way to express the total energy is a second-order 

relation 
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E 2 = c 2 p 2 + Eo 
2     (1.3)  

where p = m(v)v is the momentum of the particle.  Eqs. (1.1) – (1.3) are the general 

relations between the total and kinetic energies, mass, and momentum.  We now 

introduce the deBroglie wave by defining its wavelength λ  in terms of the momentum of 

the corresponding particle, 

λ = h / p     (1.4)  

where h is the Planck’s constant ( h / 2π = h = 1.055x10−27 erg sec). Two limiting cases 


are worth noting. 


Non-relativistic regime:  


Eo >> Ekin, p = (2mo Ekin )
1/ 2 , λ = h / 2mo Ekin = h / mov (1.5) 

Extreme relativsitic regime: 

Ekin >> Eo , p = Ekin / c , λ = hc / E (1.6) 

Eq.(1.6) applies as well to photons and neutrinos which have zero rest mass. The 

kinematical relations just discussed are general.  In practice we can safely apply the non-

relativistic expressions to neutrons, protons, and all nuclides, because their rest mass 

energies are always much greater than any kinetic energies we will encounter.  The same 

is not true for electrons, since we will be interested in electrons with energies in the Mev 

region. Thus, the two extreme regimes do not apply to electrons, and one should use 

(1.3) for the energy-momentum relation.  Since photons have zero rest mass, they are 

always in the relativistic regime. 

 Nuclear charge 

The charge of a nuclide z X A   is positive and equal to Ze, where e is the magnitude of the 

electron charge, e = 4.80298 x 10-10 esu (= 1.602189 x 10-19 Coulomb).  We consider 

single atoms as exactly neutral, the electron-proton charge difference is < 5 x 10-19 e, and 

the charge of a neutron is < 2 x 10-15 e. 
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We can look to high-energy electron scattering experiments to get an idea of how 

nuclear density and charge density are distributed across the nucleus.  Fig. 2 shows two 

typical nucleon density distributions obtained by high-energy electron scattering.  One 

Fig. 2. Nucleon density distributions showing nuclei having no sharp boundary. 

can see two basic components in each distribution, a core region of constant density and a 

boundary region where the density decreases smoothly to zero.  Notice the magnitude of 

the nuclear density is 1038 nucleons per cm3, compared to the atomic density of solids and 

liquids which is in the range of 1024 nuclei per cm3. What does this say about the packing 

of nucleons in a nucleus, or the average distance between nucleons versus the separation 

between nuclei? Indeed the nucleons are packed together much more closely than the 

nuclei in a solid.  The shape of the distributions shown in Fig. 2 can be fitted to the 

expression, called the Saxon distribution,  

ρoρ(r) =     (1.7)  
1+ exp[(r − R) / a] 

where ρo = 1.65 x 1038 nucleons/cm3, R ~ 1.07 A1/3 F, and a ~ 0.55 F. A sketch of this 

distribution, given in Fig. 3, shows clearly the core and boundary components of the  

Fig. 3.  Schematic of the nuclear density distribution, with R being a measure of the 

nuclear radius, and the width of the boundary region being given by 4.4a. 
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distribution. Detailed studies based on high-energy electron scattering have also revealed 

that even the proton and the neutron have rather complicated structures.  This is 

illustrated in Fig. 4.  We note that mesons are unstable particles of mass between 

Fig. 4.  Charge density distributions of the proton and the neutron showing how each can 

be decomposed into a core and two meson clouds, inner (vector) and outer (scalar).  The 

core has a positive charge of ~0.35e with probable radius 0.2 F.  The vector cloud has a 

radius 0.85 F, with charge .5e and -.5e for the proton and the neutron respectively, 

whereas the scalar clouid has radius 1.4 F and charge .15e for both proton and 

neutron[adopted from Marmier and Sheldon, p. 18].  

the electron and the proton: π -mesons (pions) play an important role in nuclear forces 

( mπ ~ 270me ), µ -mesons(muons) are important in cosmic-ray processes ( mµ ~ 207me ). 

Nuclear Spin and Magnetic Moment 

Nuclear angular momentum is often known as nuclear spin hI  ; it is made up of two 

parts, the intrinsic spin of each nucleon and their orbital angular momenta.  We call I the 

spin of the nucleus, which can take on integral or half-integral values.  The following is 

usually accepted as facts.  Neutron and proton both have spin 1/2 (in unit of h ). Nuclei 

with even mass number A have integer or zero spin, while nuclei of odd A have half- 

integer spin. Angular momenta are quantized. 
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Associated with the spin is a magnetic moment µ , which can take on any value because
I 

it is not quantized.  The unit of magnetic moment is the magneton 

e h 
µn ≡ =

µB = 0.505 x 10-23 ergs/gauss  (1.8)
2m c 1836.09p 

where µB  is the Bohr magneton.  The relation between the nuclear magnetic moment and 

the nuclear spin is 

µ = γhI      (1.9)  
I 

where γ  here is the gyromagnetic ratio (no relation to the Einstein factor in special 

relativity).  Experimentally, spin and magnetic moment are measured by hyperfine 

structure (splitting of atomic lines due to interaction between atomic and nuclear 

magnetic moments), deflations in molecular beam under a magnetic field (Stern- 

Gerlach), and nuclear magnetic resonance (precession of nuclear spin in combined DC 

and microwave field).  We will say more about nmr later. 

Electric Quadruple Moment 

The electric moments of a nucleus reflect the charge distribution (or shape) of the 

nucleus. This information is important for developing nuclear models.  We consider a 

classical calculation of the energy due to electric quadruple moment.  Suppose the 

nuclear charge has a cylindrical symmetry about an axis along the nuclear spin I, see Fig. 

5. 
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Fig. 5.  Geometry for calculating the Coulomb potential energy at the field point S1 due 

to a charge distribution ρ(r) on the spheroidal surface as sketched.  The sketch is for r1 

located along the z – axis. 

The Coulomb energy at the point S1 is 

V (r1 ,θ1 ) = ∫ d 3r ρ(r)     (1.10)  
d 

where ρ(r)  is the charge density, and d = r1 − r . We will expand this integral in a 

power series in 1/ r1  by noting the expansion of 1/d in a Legendre polynomial series, 

1 1 ∞ ⎛ r ⎞
n 

= ∑⎜⎜ ⎟⎟ P (cosθ )     (1.11)  
d r1 n=0 ⎝ r1 ⎠ 

n 

where P0(x) = 1, P1(x) = x, P2(x) = (3x2 – 1)/2, …Then (1.10) can be written as 

1 ∞ anV (r1 ,θ1 ) = ∑ n     (1.12)  
r1 n=0 r1 
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with a = ∫ d 3 rρ(r) =  Ze     (1.13)  o 

a1 = ∫ d 3rzρ(r) = electric dipole  (1.14) 

a2 = ∫ d 3r 1 (3z 2 − r 2 )ρ(r) ≡ 
1 eQ (1.15)

2 2 

The coefficients in the expansion for the energy, (1.12), are recognized to be the total 

charge, the dipole (here it is equal to zero), the quadruple, etc.  In (1.15) Q is defined to 

be the quadruole moment (in unit of 10-24 cm2, or barns). Notice that if the charge 

distribution were spherically symmetric, <x2> = <y2> = <z2> = <r2>/3, then Q = 0. We 

see also, Q > 0, if 3<z2> > <r2> and  Q <0, if 3<z2> < <r2>. The corresponding shape 

of the nucleus in these two cases would be prolate or oblate spheroid, respectively (see 

Fig. 6). 

Fig. 6.  Prolate and oblate spheroidal shapes of nuclei as indicated by a  positive or 

negative value of the electric quadruple moment Q. 

Some values of the spin and quadruple moments are: 

Nucleus  I  Q  [10-24 cm2] 

n 1/2 0 
p 
H2

 1/2 
1 

0 
0.00274 

He4  0 0 
Li6  1 -0.002 
U233

U235

Pu241

 5/2 
7/2 
5/2 

3.4 
4 
4.9 
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For calculations and quick estimates, the following table of physical constants and 
conversion factors, taken from Meyerhof, Elements of Nuclear Physics (1967), appendix 
D, is useful. 
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Unit
Constant Value

mks cgs

Speed of light in vacuum c 2.997925(1) x 108 m s-1 x 1010 cm s-1

Elementary charge e 1.60210(2) 10-19 C 10-20 emu
4.80298(7) 10-10 esu

Avogadro's number N 6.02252(9) 1026 kmole-1 1023 mole-1

Mass unit 1.66043(2) 10-27 kg 10-24 g

Electron rest mass m -31 -28 
0 9.10908(13) 10 kg 10 g

5.48597(3) 10-4 u 10-4 u

Proton rest mass MP 1.67252(3) 10-27 kg 10-24 g
1.00727663(8) u u

Neutron rest mass Mn 1.67482(3) 10-27 kg 10-24 g
1.0086654(4) u u

Faraday constant Ne 9.64870(5) 104 C mole-1 103 emu
2.89261(2) 1014 esu

h 6.62559(16) 10-34  J s 10-27 _  erg s Planck constant h = h/2π 1.054494(25) 10-34  J s 10-27  erg s

Charge-to-mass ratio for electron e/m0 1.758796(6) 1011 C kg-1 107 emu
5.27274(2) 1017 esu

Rydberg constant 2π2m e4/h3c 1.0973731(1) 107 m-1 105 cm-1
0

_
Bohr radius h2/m e2 5.29167(2) 10-11 m 0-9 

0 1 cm

h/m c 2.42621(2) 10-12 m 10-10 cmCompton wavelength of electron _ 0
h/m c 3.86144(3) 10-13 m 10-11 cm0

Compton wavelength of proton h/Mpc 1.321398(13) 10-15 m 10-13 cm_
h/M -16 m 10-14 

pc 2.10307(2) 10 cm

General Physical Constants. The numbers in parentheses after each quoted value represent the standard
deviation error in the final digits of the given value, as computed on the criterion of internal consistency. 
The unified scale of atomic weights (12C = 12) is used throughout.

Figure by MIT OCW. Adapted from Meyerhof, Appendix D.



         
         
         

1 electron volt 1.6021 x 10-19 J 
   1.6021 x 10-12 erg 

1 erg 1 gm cm2/sec 

1 h 1.054 x 10-27 erg sec 

1kB   1.3806 x 10-16 erg oK-1 

Proton mass 931.478 Mev 
Neutron mass 939.550 Mev 
Electron mass 0.511 Mev 
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