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22.101 Applied Nuclear Physics (Fall 2006) 

Lecture 19 (11/22/06) 

Gamma Interactions:  Compton Scattering 
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We are interested in the interactions of gamma rays, electromagnetic radiations 

produced by nuclear transitions.  These are typically photons with energies in the range 

of ~ 0.1 – 10 Mev. The attenuation of the intensity of a beam of gamma rays in an 

absorber, sketched in Fig. 17.1, follows a true exponential variation with the distance of 

penetration, which is unlike that of charged particles, 

Fig. 17.1. Attenuation of a beam of gamma radiation through an absorber of thickness x. 

I (x) = Ioe−µx (17.1) 

The interaction is expressed through the linear attenuation coefficient µ  which does not 

depend on x but does depend on the energy of the incident gamma.  By attenuation we 

mean either scattering or absorption.  Since either process will remove the gamma from 

the beam, the probability of penetrating a distance x is the same as the probability of 

traveling a distance x without any interaction, exp(-µ x). The attenuation coefficient is 
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therefore the probability per unit path of interaction; it is what we would call the 

macroscopic cross section Σ = Nσ  in the case of neutron interaction. 

There are several different processes of gamma interaction.  Each process can be 

treated as occurring independently of the others; for this reason µ  is the sum of the 

individual contributions. These contributions, of course, are not equally important at any 

given energy. Each process has its own energy variation as well as dependence on the 

atomic number of the absorber .  We will focus our discussions on the three most 

important processes of gamma interaction, Compton scattering, photoelectric effect, and 

pair production. These can be classified by the object with which the photon interacts 

and the type of process (absorption or scattering), as shown in the matrix below. 

Photoelectric is the absorption of a photon followed by the ejection of an atomic electron.  

Compton scattering is the inelastic (photon loses energy) relativistic scattering by a free 

electron. For Compton scattering it is implied that the photon energy is at least 

comparable to the rest mass energy of the electron.  If the photon energy is much lower 

than the rest mass energy, the scattering by a free electron then becomes elastic (no 

energy loss), a process that we will call Thomson scattering.  When the photon energy is 

greater than twice the rest mass energy of electron, the photon can be absorbed and an 

electron-positron pair is emitted.  This is the process of pair production.  Other 

combinations of interaction and process in the matrix (marked x) could be discussed, but 

they are of no interest to us in this class.  

   Interaction with  \ absorption  elastic scattering inelastic scattering

    atomic electron photoelectric Thomson Compton

 nucleus x x x 

electric field aro
 the nucleus 

und pair production  x x 

Given what we have just said, the attenuation coefficient becomes 


µ = µC + µτ + µκ (17.1) 
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where the subscripts C, τ , and κ  will be used henceforth to denote Compton scattering, 

photoelectric effect, and pair production respectively. 

Compton Scattering 

The treatment of Compton scattering is similar to our analysis of neutron 

scattering in several ways. This analogy should be noted by the student as the discussion 

unfolds here. The phenomenon is the scattering of a photon with incoming momentum 

hk  by a free, stationary electron, which is treated relativistically.  After scattering at 

angleθ , the photon has momentum hk ' , while the electron moves off at an angle ϕ  with 

momentum p  and kinetic energy T, as shown in Fig. 17.1. 

Fig. 17.1. Schematic of Compton scattering at angle θ  with momentum and energy 

transferred to the free electron. 

To analyze the kinematics we write the momentum and energy conservation equations, 

hk = hk '+ p (17.2) 

hck = hck '+T (17.3) 

where the relativistic energy-momentum relation for the electron is 

(17.4)( )22 cmTTcp e+=
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with c being the speed of light.  One should also recall the relations, ω = ck  and λν = c , 

with ω  and ν  being the circular and linear frequency, respectively ( ω = 2πν ), and λ 

the wavelength of the photon. By algebraic manipulations one can obtain the following 

results. 

λ '−λ = 
c 
− 

c 
= 

h (1 − cosθ ) (17.5)
ν ' ν m ce

ω ' 1 
=  (17.6)

ω 1 +α (1 − cosθ ) 

T = hω − hω ' = hω α (1 − cosθ ) (17.7)
1 +α (1 − cosθ ) 

θcotϕ = (1 +α ) tan (17.8)
2 

In (17.5) the factor h/mec = 2.426 x 10-10 cm is called the Compton wavelength.  The gain 

in wavelength after scattering at an angle of θ  is known as the Compton shift.  This shift 

in wavelength is independent of the incoming photon energy, whereas the shift in energy 

(17.7) is dependent on energy. In (17.6) the parameter α = hω / mec
2  is a measure of the 

photon energy in units of the electron rest mass energy (0.511 Mev).  As α →1, ω '→ω 

and the process goes from inelastic to elastic.  Low-energy photons are scattered with 

only a moderate energy change, while high-energy photons suffer large energy change.  

For example, at θ = π / 2 , if hω  = 10 kev, then hω ' = 9.8 kev (2% change), but if hω  = 

10 Mev, then hω ' = 0.49 Mev (20-fold change). 

Eq.(17.7) gives the energy of the recoiling electron which is of interest because 

this is often the quantity that is measured in Compton scattering.  In the limit of energetic 

gammas, α  >> 1, the scattered gamma energy becomes only a function of the scattering 
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angle; it is a minimum for backward scattering ( θ = π ), hω ' = mec
2 / 2 , while for 90o 

scattering hω ' = mec
2 . The maximum energy transfer is given by (17.7) with θ = π , 

hωTmax = (17.9)
11 + 

2α 

Klein-Nishina Cross Section 

The proper derivation of the angular differential cross section for Compton 

scattering requires a quantum mechanical calculation using the Dirac’s relativistic theory 

of the electron. This was first published in 1928 by Klein and Nishina [for details, see W. 

Heitler].  We will simply quote the formula and discuss some of its implications. The 

cross section is 

dσ C re 
2 ⎛ω ' ⎞

2 
⎡ω ω ' 2 ⎤ 

dΩ
= 

4 ⎝
⎜
ω ⎠
⎟ ⎢⎣ω ' 

+
ω 

− 2 + 4 cos Θ⎥⎦ 
(17.10) 

where Θ  is the angle between the electric vector ε  (polarization) of the incident photon 

and that of the scattered photon, ε ' . The diagrams shown in Fig. 17.2 are helpful in 

visualizing the various vectors involved.  Recall that a photon is an electromagnetic wave   

Fig. 17.2. Angular relations among incoming and outgoing wave vectors, k  and k ' , of 

the scattered photon, and the electric vectors, ε  and ε ' , which are transverse to the 

corresponding wave vectors. 
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characterized by a wave vector k  and an electric vector ε  which is perpendicular to k . 

For a given incident photon with (k,ε ) , shown above, we can decompose the scattered 

photon electric vector ε '  into a component ε ' ⊥  perpendicular to the plane containing k 

and ε , and a parallel component ε ' C  which lies in this plane.  For the perpendicular 

component cos Θ⊥  = 0, and for the parallel component we notice that  

cosγ = cos ⎛⎜
π 
2 
− ΘC

⎞
⎟ = sin ΘC = sinθ cosϕ (17.11)

⎝ ⎠ 

Therefore, 

cos2 Θ = 1 − sin 2 θ cos2 ϕ (17.12) 

The decomposition of the scattered photon electric vector means that the angular 

differential cross section can be written as 

dσ C ⎛ dσ C ⎞ ⎛ dσ C ⎞ = ⎜ ⎟ + ⎜ ⎟
dΩ ⎝ dΩ ⎠⊥ ⎝ dΩ ⎠C 

= 
r 
2 
e
2 

⎜
⎝
⎛ω
ω 

' 
⎟
⎠
⎞

2 

⎢⎣
⎡
ω
ω 

' 
+ 
ω
ω 

' 
− 2sin 2 θ cos2 ϕ⎥⎦

⎤ (17.14) 

This is because the cross section is proportional to the total scattered intensity which in 

turn is proportional to (ε ' ) 2 . Since ε ' ⊥ and ε ' C are orthogonal, (ε ' ) 2  = (ε ' ⊥ )
2 + (ε ' C )

2 

and the cross section is the sum of the contributions from each of the components. 

In the low-energy (non-relativistic) limit, hω << mec
2 , we have ω ' ≈ω , then 

⎛ dσ C ⎞ ⎛ dσ C ⎞ 2 2 2⎜ ⎟ ~ 0 , ⎜ ⎟ ~ r (1 − sin θ cos ϕ) (17.15)
⎝ dΩ ⎠⊥ ⎝ dΩ ⎠C

e 
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This means that if the incident radiation is polarized (photons have a specific polarization 

vector), then the scattered radiation is also polarized. But if the incident radiation is 

unplolarized, then we have to average dσ C / dΩ over all the allowed directions of ε 

(remember ε  is perpendicular to k ). Since dσ C / dΩ depends only on angles θ 

and ϕ , we can obtain the result for unpolarized radiation by averaging over ϕ . Thus, 

⎛ dσ C ⎞ 1 2π ⎛ dσ C ⎞⎜ ⎟ = ∫ dϕ⎜ ⎟ 
⎝ dΩ ⎠unpol 2π 0 ⎝ dΩ ⎠C 

e= 
r 2 

(1 + cos2 θ ) (17.16)
2 

with re ≡ e2 / mec
2 = 2.818 x 10-13 cm being the classical radius of the electron (cf. 

(14.1)). This is a well-known expression for the angular differential cross section for 

Thomson scattering. Integrating this over all solid angles gives 

σ C = ∫ dΩ
⎛
⎜ 

d
d 
σ
Ω 

C ⎞⎟ = 
8
3 
π re 

2 ≡σ o (17.17)
⎝ ⎠unpol 

which is known as the Thomson cross section. 

Returning to the general result (17.14) we have in the case of unpolarized 

radiation, 

dσ C = 
re 

2 

⎜
⎛ω ' 

⎟
⎞

2 

⎜
⎛ ω 

+
ω ' 

− sin 2 θ ⎟
⎞ (17.18)

dΩ 2 ⎝ ω ⎠ ⎝ω ' ω ⎠ 

We can rewrite this result in terms of α  and cosθ  by using (17.6), 

dσ C re 
2

2 ⎛ 1 ⎞
2 
⎡ α 2 (1− cosθ )2 ⎤ 

dΩ
= 

2 
(1+ cos θ )⎜⎜

⎝1+α (1− cosθ ) ⎟
⎟
⎠ 
⎢
⎣ 
1+ 

(1+ cos2 θ )[1+α (1− cosθ )]⎥⎦ 
(17.19) 
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The behavior of dσ C / dΩ is shown in Fig. 17.3. Notice that at any given α  the angular 

distribution is peaked in the forward direction.  As α  increases, the forward peaking 

becomes more pronounced.  The deviation from Thomson scattering is largest at large 

scattering angles; even at hω ~  0.1 Mev the assumption of Thomson scattering is not 

Fig. 17.3. Angular distribution of Compton scattering at various incident energies Er. 

All curves are normalized at 0o. Note the low-energy limit of Thomson scattering.  (from 

Heitler) 

valid. In practice the Klein-Nishina cross section has been found to be in excellent 

agreement with experiments at least out to hω = 10mec
2 . 

To find the total cross section per electron for Compton scattering, one can 

integrate (17.19) over solid angles. The analytical result is given in Evans, p. 684.  We 

will note only the two limiting cases, 

σ C = 1− 2α + 
26 α 2 − ... α << 1

σ o 5 

           (17.20)

3 mec
2 ⎡ 2hω 1 ⎤ = ⎢ln + ⎥ α >> 1 

8 hω ⎣ mec
2 2⎦ 
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We see that at high energies ( ≥  1 Mev) the Compton cross section decreases with energy 

like 1/ hω . 

Collision, Scattering and Absorption Cross Sections 

In discussing the Compton effect a distinction should be made between collision 

and scattering. Here collision refers to ordinary scattering in the sense of removal of the 

photon from the beam.  This is what we have been discussing above. Since the electron 

recoils, not all the original energy hω  is scattered, only a fraction ω ' /ω is. Thus one 

can define a scattering cross section, 

dσ sc =
ω ' dσ C (17.21)

dΩ ω dΩ 

This leads to a slightly different total cross section, 

σ sc ~ 1− 3α + 9.4α 2 − ... α << 1 (17.22)
σ o 

Notice that in the case of Thomson scattering all the energy is scattered and none are 

absorbed. The difference between σ C  and σ sc  is called the Compton absorption cross 

section. 

Energy Distribution of Compton Electrons and Photons 

We have been discussing the angular distribution of the Compton scattered 

dσ Cphotons in terms of . To transform the angular distribution to an energy distribution 
dΩ 

we need first to reduce the angular distribution of two angle variables, θ  and ϕ , to a 

distribution in θ  (in the same way as we had done in Chapter 15).  We therefore define 

dσ C
2π dσ C dσ C= ∫ dϕ sinθ = 2π sinθ (17.23)

dθ 0 dΩ dΩ 
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and write 

dσ C =
dσ C dθ (17.24)

dω ' dθ dω ' 

with ω ' and θ  being related through (17.6). Since we can also relate the scattering angle 

θ  to the angle of electron recoil φ  through (17.8), we can obtain the distribution of 

electron energy by performing two transformations, from θ  to φ  first, then from φ  to T 

by using the relation 

2α cos2 φT = hω 2 2 2 (12.24)
(1+α ) −α cos φ 

as found by combining (17.7) and (17.8).  Thus, 

dσ C 2π sinφdφ = 
dσ C 2π sinθdθ (12.25)

dΩ dΩe 

dσ C dσ C= 2π sinφ (12.26)
dφ dΩe 

dσ C =
dσ C dφ (12.27)

dT dφ dT 

These results show that all the distributions are related to one another.  In Fig. 17.4 we 

show several calculated electron recoil energy distributions which can be compared with 

the experimental data shown in Fig. 17.5. 
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Fig. 17.4.  Energy distribution of Compton electrons for several incident gamma-ray 

energies. (from Meyerhof) 

Fig. 17.5. Pulse-height spectra of Compton electrons produced by 0.51-  and 1.28-Mev 

gamma rays.  (from Meyerhof) 

For a given incident gamma energy the recoil energy is maximum at θ = π , where hω ' is 

smallest.  We had seen previously that if the photon energy is high enough, the outgoing 

photon energy is a constant at ~0.255 Mev. In Fig. 17.4 we see that for incident photon 

energy of 2.76 Mev the maximum electron recoil energy is approximately 2.53 Mev, 

which is close to the value of (2.76 – 0.255).  This correspondence should hold even 

better at higher energies, and not as well at lower energies, such as 1.20 and 0.51 Mev.  
11 
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We can also see by comparing Figs. 17.4 and 17.5 that the relative magnitudes of the 

distributions at the two lower incident energies match quite well between calculation and 

experiment.  The distribution peaks near the cutoff Tmax because there is an appreciable 

range of θ  near θ = π , where cosθ  ~ 1 (cosine changes slowly in this region) and so 

hω '  remains close to mec2/2. This feature is reminiscent of the Bragg curve depicting the 

specific ionization of a charged particle (Fig. (14.3)). 

From the electron energy distribution 
dσ C  we can deduce directly the photon
dT 

energy distribution 
dσ C  from 
dω ' 

dσ C = 
dσ C dσ CdT 

= h (12.28)
dω ' dT dω ' dT 

since hω '= hω − T . 
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