Problem 1 (15\%) - Sizing the shell of a spherical containment

i)

The principal stresses for a thin spherical shell are:

$$
\begin{align*}
& \sigma_{\mathrm{r}}=-\left(\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{o}}\right) / 2 \tag{1}\\
& \sigma_{\theta}=\sigma_{\varphi}=\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{o}}\right) \mathrm{R}_{\mathrm{c}} /\left(2 \mathrm{t}_{\mathrm{c}}\right)
\end{align*}
$$

where $p_{i}=1.9 \mathrm{MPa}$ and $\mathrm{p}_{\mathrm{o}}=0.1 \mathrm{MPa}, \mathrm{R}_{\mathrm{c}}=12.5 \mathrm{~m}$ and t_{c} is the shell thickness. Hook's law yields:

$$
\begin{equation*}
\varepsilon_{\theta}=\mathrm{u} / \mathrm{R}_{\mathrm{c}}=1 / \mathrm{E}\left[\sigma_{\theta}-v\left(\sigma_{\varphi}+\sigma_{\mathrm{r}}\right)\right] \tag{2}
\end{equation*}
$$

where $\mathrm{E}=184 \mathrm{GPa}$ and $v=0.33$. Substituting Eq. (1) in Eq. (2), setting $\mathrm{u}=1 \mathrm{~cm}$ and solving for t_{c}, one gets:

$$
\mathrm{t}_{\mathrm{c}}=\mathrm{R}_{\mathrm{c}}(1-v)\left(\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{o}}\right) /\left[2 \mathrm{E} \mathrm{u} / \mathrm{R}_{\mathrm{c}}-v\left(\mathrm{p}_{\mathrm{i}}+\mathrm{p}_{\mathrm{o}}\right)\right] \approx 3.7 \mathrm{~cm}
$$

Since $R_{c} / t_{c}>10$, the thin shell asumption of accurate.
ii)

The primary membrane general stress intensity for this case is:

$$
\mathrm{P}_{\mathrm{m}}=\left(\sigma_{\theta}-\sigma_{\mathrm{r}}\right) \approx 102 \mathrm{MPa}
$$

σ_{θ} and σ_{r} were calculated from Eq. (1) (thin shell assumption still applies), for $t_{c}=8 \mathrm{~cm}$. The ASME limit is $\mathrm{S}_{\mathrm{m}}=110 \mathrm{MPa}$. Therefore the margin is $\mathrm{S}_{\mathrm{m}} / \mathrm{P}_{\mathrm{m}} \approx 1.075$, or 7.5%.

Problem 2 (25\%) - Reduction of containment pressure after LOCA

Conservation of energy for the containment:

$$
\begin{equation*}
\frac{\partial E_{C V}}{\partial t}=\dot{Q}_{\text {decay }}-\dot{Q}_{s s} \tag{3}
\end{equation*}
$$

where $\dot{Q}_{\text {decay }}=\dot{Q}_{0} 0.066 t^{-0.2}, \dot{Q}_{0}=1000 \mathrm{MW}$, and $\dot{Q}_{\mathrm{ss}}=20 \mathrm{MW}$. Integrating Eq. (3):
$E_{2}-E_{1}=\dot{Q}_{0} \frac{0.066}{0.8} t_{2}^{0.8}-\dot{Q}_{s s} t_{2}$
Expanding the left-hand side, one gets:
$M_{a} c_{v, a}\left(T_{2}-T_{1}\right)+M_{w}\left\{\left[u_{f}\left(T_{2}\right)\left(1-x_{2}\right)+u_{g}\left(T_{2}\right) x_{2}\right]-\left[u_{f}\left(T_{1}\right)\left(1-x_{1}\right)+u_{g}\left(T_{1}\right) x_{1}\right]\right\}=\dot{Q}_{0} \frac{0.066}{0.8} t_{2}^{0.8}-\dot{Q}_{s s} t_{2}$
where $\mathrm{M}_{\mathrm{a}}, \mathrm{c}_{\mathrm{v}, \mathrm{a}}, \mathrm{T}_{1}, \mathrm{M}_{\mathrm{w}}$ and x_{1} are all known from the problem statement. The following equation holds for the control volume:

$$
\begin{equation*}
V_{\text {tot }}=M_{w}\left[v_{f}\left(T_{2}\right)\left(1-x_{2}\right)+v_{g}\left(T_{2}\right) x_{2}\right] \tag{6}
\end{equation*}
$$

The containment pressure at $\mathrm{t}_{2}, \mathrm{P}_{2}=0.5 \mathrm{MPa}$, is the sum of the partial pressures of water and air:
$P_{2}=P_{\text {sat }}\left(T_{2}\right)+\frac{M_{a} R_{a} T_{2}}{V_{\text {tot }}-M_{w}\left(1-x_{2}\right) v_{f}\left(T_{2}\right)}$
Therefore, Eqs. (5), (6) and (7) are 3 equations in the only unknowns t_{2}, T_{2} and x_{2}. Actually solving the equations, one finds $\mathrm{t}_{2} \approx 14300 \mathrm{~s}, \mathrm{~T}_{2} \approx 140.4^{\circ} \mathrm{C}$ and $\mathrm{x}_{2} \approx 0.035$.

Problem 3 (45\%) - Superheated Boiling Water Reactor

i)

T-s diagram:

ii) Taking the whole system as a control volume, the conservation of energy yields:
$0=\dot{Q}+\dot{m}_{F W}\left(h_{F W}-h_{\text {sup }}\right) \quad \Rightarrow \quad \dot{m}_{F W}=\dot{Q} /\left(h_{\text {sup }}-h_{F W}\right)$
where $\dot{Q}=1000 \mathrm{MW}$ and h_{FW} and $\mathrm{h}_{\text {sup }}$ are the specific enthalpy of the feedwater and superheated steam, respectively. The difference $\mathrm{h}_{\text {sup }}-\mathrm{h}_{\mathrm{FW}}$ can be expressed as follows:
$h_{\text {sup }}-h_{F W}=c_{p, g}\left(T_{\text {sup }}-T_{\text {sat }}\right)+h_{f g}+c_{p, f}\left(T_{\text {sat }}-T_{F W}\right) \approx 2936 \mathrm{~kJ} / \mathrm{kg}$
where $\mathrm{T}_{\mathrm{FW}}=230^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {sup }}=510^{\circ} \mathrm{C}$. Therefore, Eq. (8) yields $\dot{m}_{F W} \approx 340.6 \mathrm{~kg} / \mathrm{s}$.
iii)

The acceleration pressure drop is
$\Delta P_{\text {acc }}=G^{2}\left[\frac{1}{\rho_{m, o \text { ut }}^{+}}-\frac{1}{\rho_{m, \text { in }}^{+}}\right]$
where $G=\frac{\dot{m}}{A} \approx 1800 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}, \dot{m}=2270 \mathrm{~kg} / \mathrm{s}, \mathrm{A}=1.26 \mathrm{~m}^{2}$ and
$\rho_{m}^{+} \equiv \frac{1}{\frac{x^{2}}{\alpha \rho_{g}}+\frac{(1-x)^{2}}{(1-\alpha) \rho_{f}}}$
Since at the inlet there is only the liquid phase, it is $\rho_{m, i n}^{+}=\rho_{f}$, while at the outlet $\mathrm{x}=0.15$ and the void fraction can be found from the fundamental relation of two-phase flow:
$\alpha=\frac{1}{1+\frac{\rho_{g}}{\rho_{f}} \cdot \frac{1-x}{x} \cdot S} \approx 0.69$
where $S=2$, per the problem statement. Then it is $\rho_{m, \text { out }}^{+} \approx 240.3 \mathrm{~kg} / \mathrm{m}^{3}$ from Eq. (10), and finally
Eq. (9) yields $\Delta P_{a c c} \approx 9,235 \mathrm{~Pa}$
iv)

Since the heat flux is axially constant, dryout would occur at the outlet (Point B). The critical quality at the outlet is found to be $\mathrm{x}_{\mathrm{cr}} \approx 0.344$ from the CISE- 4 correlation with $\mathrm{L}_{\mathrm{b}}=3 \mathrm{~m}$, and the coefficients $\mathrm{a}=0.5987$ and $\mathrm{b}=2.2255$, calculated for $\mathrm{P}=6 \mathrm{MPa}, \mathrm{P}_{\mathrm{c}}=22.1 \mathrm{MPa}, \mathrm{G}=1800$ $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}>\mathrm{G}^{*}=1211 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}, \mathrm{D}_{\mathrm{e}}=0.02 \mathrm{~m}$.
Then the critical power of the $\mathrm{A} \rightarrow \mathrm{B}$ channels is $\dot{Q}_{c r, A B}=\dot{m}\left[c_{p, f}\left(T_{\text {sat }}-T_{A}\right)+x_{c r} h_{f g}\right] \approx 1311 \mathrm{MW}$, where $\mathrm{T}_{\mathrm{A}}=268^{\circ} \mathrm{C}$. So, the $C P R=\frac{\dot{Q}_{c r, A B}}{\dot{Q}_{A B}} \approx 2.12$, with $\dot{Q}_{A B}=\dot{m}\left[c_{p, f}\left(T_{\text {sat }}-T_{A}\right)+x_{B} h_{f g}\right] \approx 618 \mathrm{MW}$ being the operating power of the $\mathrm{A} \rightarrow \mathrm{B}$ channels, where $\mathrm{x}_{\mathrm{B}}=0.15$.

Problem 4 (15\%) - Thermodynamic analysis of a new power cycle

To be thermodynamically feasible, the cycle must not violate the $1^{\text {st }}$ and $2^{\text {nd }}$ law of thermodynamics.

Taking the whole power cycle as the control volume, the conservation of energy ($1^{\text {st }}$ law) becomes:
$0=\dot{Q}-\dot{W}+\dot{m}_{\text {sea }}\left(h_{\text {in }}-h_{\text {out }}\right)$
where steady-state was assumed and $\dot{Q}=1000 \mathrm{MW}, \dot{W}=400 \mathrm{MW}, \dot{m}_{\text {sea }}=15000 \mathrm{~kg} / \mathrm{s}$, $\left(h_{\text {in }}-h_{\text {out }}\right)=c_{\text {sea }}\left(T_{\text {in }}-T_{\text {out }}\right), c_{\text {sea }}=4000 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ and $T_{\text {in }}=288 \mathrm{~K}\left(15^{\circ} \mathrm{C}\right)$ and $T_{\text {out }}=298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$. Using these numbers, Eq. 11 is identically satisfied. Therefore, the cycle does not violate the $1^{\text {st }}$ law.

With the same choice of control volume, the $2^{\text {nd }}$ law becomes:
$0=\frac{\dot{Q}}{T_{r}}+\dot{m}_{\text {sea }}\left(s_{\text {in }}-s_{\text {out }}\right)+\dot{S}_{\text {gen }} \Rightarrow \quad \dot{S}_{\text {gen }}=\dot{m}_{\text {sea }}\left(s_{\text {out }}-s_{\text {in }}\right)-\frac{\dot{Q}}{T_{r}}$
where $\mathrm{T}_{\mathrm{r}}=723 \mathrm{~K}\left(450^{\circ} \mathrm{C}\right)$ and $s_{\text {out }}-s_{\text {in }}=c_{\text {sea }} \ln \frac{T_{\text {out }}}{T_{\text {in }}}$. Then Eq. 12 yields $\dot{S}_{\text {gen }}=665 \mathrm{~kW} / \mathrm{K}>0$, therefore the cycle does not violate the $2^{\text {nd }}$ law either.

MIT OpenCourseWare
http://ocw.mit.edu

22.312 Engineering of Nuclear Reactors

Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

