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TAKE HOME QUIZ 2 (solution) 

 
 

Problem 1 (75%) – Cooling system for an accelerator target 

i)  
The total beam power, Q& =200 W, can be obtained by integrating the volumetric heat generation 
over the whole volume of the tungsten target, VW: 
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From which we get:  

 
παQ&qmax′′′ = −α δ  ≈ 1.28×109 W/m3 

2wL(1− e )
 
ii)  
First let us use the energy equation for the Na-K coolant, to find the axial distribution of the 
coolant bulk temperature, Tb(z): 
 

 dTm& c b
p = q′′(z)Ph         (1) 

dz
 
where the heated perimeter for the Na-K coolant channel is Ph = w, and the heat flux into the 
coolant is: 
 

 
δ q′′′ ⎛ π z ⎞q′′(z) = ∫q′′′dx = max (1− e−α δ )cos⎜ ⎟  
0 α ⎝ L ⎠

 
Integrating Eq (1) with the initial condition Tb(-L/2) = Tin = 50°C, we get: 
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To get the temperature distribution within the tungsten target, we now need to solve the heat 
conduction equation: 
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 d 2T0 = kW 2 + q′′′(x, z)         (3) 
dx

 
where conduction in the y and z directions was neglected, as per the problem statement.  The 
boundary conditions for Eq. (3) are: 
 

 dT
− kW = 0   at x = 0 (no heat transfer at the surface exposed to the beam) 

dx
dT

− kW = h(T −T
dx b )  at x = δ (convective heat transfer at the surface exposed to the 

coolant) 
 
The heat transfer coefficient, h, can be found from the chart: 

- fully developed flow, as per problem statement 
- equivalent diameter De = 4sw/[2(s+w)] ≈ 3.33 mm 

- average Na-K velocity m&V =  ≈ 0.312 m/s 
ρ sw

- laminar flow (Re=
μ

ρVDe  ≈1800 < 2100) 

- ξ = s/w =0.2 ⇒ Nu≈4.5 
- h=Nu⋅k/De ≈ 32.4 kW/m2°C 

 
Integrating Eq. (3) with the above boundary conditions, we get the temperature distribution 
within the tungsten target: 
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Where Tb(z) is given by Eq. (2). 
 
iii) 
To find the maximum temperature in the target, we note that, at any given axial location, the 
temperature is maximum at the surface exposed to the beam (x = 0).  Thus, we can set x = 0 in 
Eq. (4), differentiate with respect to z, set the derivative equal to zero, and solve for z: 
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− Lw( − e− δ )zmax tan { }≈10.7 mm 
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⎣ h α kW kW ⎦
 
Thus the maximum temperature occurs above the target midplane, as expected.  Substituting zmax 
into Eq (4), again for x = 0, we get Tmax=101.9°C. 
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iv) 
The coolant and target temperatures of interest are shown in the Figure below. 
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v) 
The length of the velocity entrance region in laminar flow can be estimated as Lv/De∼0.05⋅Re ⇒ 
Lv≈300 mm.  Therefore, the velocity profile can be assumed to have fully developed before the 
target area. 
 
On the other hand, the thermal entrance region starts at the lower edge of the target, and its 
length (for metallic fluids in laminar flow) can be estimated as LT/De∼0.004⋅Re ⇒ LT≈24 mm, 
which is a significant fraction of the 50-mm length of the target. 
 
In summary, the assumption of fully-developed flow made in ‘ii’ is not accurate, because the 
temperature profile develops over a significant fraction of the target region.  Rigorously, one 
should use a heat transfer correlation that accounts for a developing temperature profile in the 
presence of a fully-developed velocity profile. 
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Problem 2 (25%) – Natural circulation flow 

Under the assumptions recommended in the problem statement the momentum equation for the 
riser is: 
 

PA PB H gH
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ρ=−         (5) 
 
where ρH is the water density in the riser.  The momentum equation for downcomer pipe # 1 is: 
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Where ρC is the water density in the downcomer, D1 is the diameter of pipe #1, G1 is the mass 
flux in pipe #1 and f1 is the friction factor in pipe #1 (found from the MacAdams correlation): 
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Substituting Eq. (7) into Eq. (6), eliminating PA-PB from Eqs. (5) and (6), and solving for G1, we 
get: 
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where the Boussinesq’s approximation was used to find ρC -ρH = ρC β ΔT, with ΔT=30°C. 

Once G1 is known, the mass flow rate in pipe #1 is readily found, 2
111 4

DGm π
=& = 7.87 kg/s. 

Similarly, for pipe #2: 
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And 2m& = 1.24 kg/s.  Finally the total mass flow rate in the loop is 21 mmmtot &&& +=  = 9.1 kg/s. 
 
Note that for the calculated values of G1 and G2, the Reynolds numbers in pipes #1 and 2 are 
∼125000 and ∼40000, respectively.  So the assumption of turbulent flow is accurate. 
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