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Problem 1 (65%) – Helium-cooled fast reactor with molten fuel within steel rods 
 
i) 
The energy equation for the coolant is: 
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where Tin = 400C is the bulk coolant temperature, M =1440 kg/s, cp= 5.2 kJ/kgC, and Q  = 1,500 
MW. 
 
The average linear power is q = )/( LNQ pin

 =16.67 kW/m, Npin=30,000 and L = 3 m.   
 
ii)  
Considering one rod and its coolant channel under the assumptions given in the problem statement 
(gravity + friction only, smooth rod surface, fully-developed flow), the total pressure drop can be 
expressed as: 
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where totP =120 kPa (per the problem statement), m = pinNM / 0.048 kg/s,  = 4.81 kg/m3, A 

is the unknown flow area of the channel ( 22

4 codpA


 ), and Pw is the wetted perimeter 

cow dP  =31.4 mm.  Assuming turbulent, fully-developed flow, a smooth rod and a large 
Reynolds number, the friction factor can be found from the correlation  
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where µ = 2.810-5 Pas.  Substituting Eq. (3) into Eq. (2) and solving for A, we get: 
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Then the rod-to-rod pitch can be found to be p  13 mm.  At this value of p the mass flux is G  
530 kg/m2s and the Reynolds number is Re  218,270, which confirms the accuracy of the 
assumption made.  
 
iii)  
Considering only conduction (per the problem statement), the radial temperature distribution within 
the fuel can be easily found by integrating the heat equation:  
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with boundary conditions dT/dr=0 at r=0 and T=Tci at r=Rci=Rco-tc= 4.5 mm: 
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where kf = 0.7 W/m·K (assumed to be independent of temperature, as per the problem statement) 
and the linear power at the conditions of interest is q=5.5 kW/m (calculated from the 500 MW 
core power).  Setting T(r) = Tm = 460C (the fuel freezing point) in Eq. (4), and solving for r we 
get the radius of the molten region as follows:  
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Now recall that the temperature on the inner surface of the cladding is: 
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where kc = 19 W/mC, and h  6955 W/m2C is the heat transfer coefficient found from the Dittus-
Boelter correlation, which is appropriate for the conditions of interest (non-metallic fluid, fully-
developed, turbulent flow1).  Also note that from the conservation of energy for the coolant we get: 
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Finally, back substituting Eqs. (7) and (6) into Eq. (5), we get: 
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1 Similar values of the heat transfer coefficient are obtained using other correlations applicable to these 
conditions, e.g. simplified Gnielinski’s or Petukhov’s 
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which is plotted in the figure below.  Note that above z = 1.33 m there is no frozen annulus in the 
fuel rods. 
 

 
 
 
Problem 2 (35%) – Passive Residual Heat Removal System 
 
Neglecting all pressure losses in the primary system except for the friction loss in the core, the 
momentum equation for the primary loop is: 
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where Tc,out and Tc,in are the unknown core inlet and outlet temperatures, respectively, plM  is the 
unknown mass flow rate in the primary system, Hpl = 10 m, fcore = 0.02; Acore = 1 m2; Lcore = 3 m; 
Dcore = 1.2 cm,  = 2×10-3 1/C and  = 800 kg/m3.  The energy equation for the core is: 
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where Q  = 9 MW and c = 5.0 kJ/kgC.  Substituting Eq. (10) into Eq. (9) and solving for plM , we 
get: 
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 448.8 kg/s 
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Now let us move to the RHRS loop.  Neglecting all pressure losses except for an equivalent form 
loss with KR = 40 (per the problem statement), the momentum equation for the RHRS loop is: 
 




2
)/()(

2

,,
RR

RRcoldRhotR

AM
KgHTT


       (11) 

 

where 2
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   and DR = 15 cm, TR,high is the unknown hot leg temperature in the RHRS loop, 

TR,cold = 100C (per the problem statement) and HR = 10 m.  The energy equation for the RHRS is: 
 

)( ,, coldRhotRR TTcMQ           (12) 
 
Substituting Eq. (12) into Eq. (11) and solving for RM , we get: 
 

3/1222










cK

AgHQ
M

R

RR
R


 

 15.2 kg/s 

 
Then from Eq. (12), we can get the hot leg temperature in the RHRS loop: 
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Finally, since hotRoutc TT ,,  =10C (per problem statement), we get outcT , =228.2C, and from Eq. 
(10): 
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