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“INTRODUCTION TO STRUCTURAL MECHANICS”

M. S. Kazimi, N.E. Todreas and L. Wolf 

1. DEFINITION OF CONCEPTS 

Structural mechanics is the body of knowledge describing the relations between external 

forces, internal forces and deformation of structural materials. It is therefore necessary to clarify 

the various terms that are commonly used to describe these quantities. In large part, structural 

mechanics refers to solid mechanics because a solid is the only form of matter that can sustain 

loads parallel to the surface. However, some considerations of fluid-like behavior (creep) are also 

part of structural mechanics. 

Forces are vector quantities, thus having direction and magnitude. They have special names 

(Fig. 1) depending upon their relationship to a reference plane: 

a) Compressive forces act normal and into the plane; 

b) Tensile forces act normal and out of the plane; and 

c) Shear forces act parallel to the plane. 

Pairs of oppositely directed forces produce twisting effects called moments. 
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Compressive Tensile Shear 

Figure 1.  Definition of Forces. 
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The mathematics of stress analysis requires the definition of coordinate systems. Fig. 2 
illustrates a right-handed system of rectangular coordinates. 
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Figure 2.  Right-handed System of Rectangular Coordinates. 

In the general case, a body as shown in Fig. 3 consisting of an isolated group of particles will 
be acted upon by both external or surface forces, and internal or body forces (gravity, centrifugal, 
magnetic attractions, etc.) 

If the surface and body forces are in balance, the body is in static equilibrium. If not, 
accelerations will be present, giving rise to inertia forces. By D’Alembert’s principle, the resultant 
of these inertial forces is such that when added to the original system, the equation of equilibrium is 
satisfied. 

The system of particles of Fig. 3 is said to be in equilibrium if every one of its constitutive 
particles is in equilibrium. Consequently, the resulting force on each particle is zero, and hence the 
vector sum of all the forces shown in Fig. 3 is zero. Finally, since we observe that the internal 
forces occur in self-canceling pairs, the first necessary condition for equilibrium becomes that the 
vector sum of the external forces must be zero. 

F 

F 

F 

n 

1 

2 

Figure 3. An Isolated System of Particles Showing External and Internal Forces (Ref. 1, 
Fig 1.12). 
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F1  + F2  + ... + Fn  = ∑ Fn = 0 (1.1a) 
n

The total moment of all the forces in Fig. 3 about an arbitrary point 0 must be zero since the vector 

sum of forces acting on each particle is zero. Again, observe that internal forces occur in self-

canceling pairs along the same line of action. This leads to the second condition for equilibrium: 

the total moment of all the external forces about an arbitrary point 0 must be zero.

 r1F1  + r2F2  + ... + rnFn  = ∑ rnFn = 0 (1.1b) 
n

where rn extends from point 0 to an arbitrary point on the line of action of force Fn. 

In Fig. 4A, an arbitrary plane, aa, divides a body in equilibrium into regions I and II. Since the 

force acting upon the entire body is in equilibrium, the forces acting on part I alone must be in 

equilibrium. 

In general, the equilibrium of part I will require the presence of forces acting on plane aa. 

These internal forces applied to part I by part II are distributed continuously over the cut surface, 

but, in general, will vary over the surface in both direction and intensity. 

dF 

I 

II 

I 

a 

a 
dA

a 

a 

Point 0 Point 0 

n 

A B 

Figure 4.  Examination of Internal Forces of a Body in Equilibrium. 

Stress is the term used to define the intensity and direction of the internal forces acting at a 

particular point on a given plane. 

Metals are composed of grains of material having directional and boundary characteristics. 

However, these grains are usually microscopic and when a larger portion of the material is 

considered, these random variations average out to produce a macroscopically uniform material. 

Macroscopic uniformity = homogenous, 

If there are no macroscopic direction properties the material is isotropic. 
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Definition of Stress (mathematically), (Fig. 4B) [see Ref. 1, p. 203] 

n 
r

T = stress at point 0 on plane aa whose normal is n passing through point 0 

= lim dF where dF is a force acting on area dA.
dAdA→0 

n 

T  to introduce the concept that 

n 

[Reference 1 uses the notation T  is a stress vector] 

NOTE: Stress is a point value. 

The stress acting at a point on a specific plane is a vector. Its direction is the limiting direction 

of force dF as area dA approaches zero. It is customary to resolve the stress vector into two 

components whose scalar magnitudes are: 

normal stress component σ: acting perpendicular to the plane 
shear stress component τ: acting in the plane. 

1.1 Concept of State of Stress 

The selection of different cutting planes through point 0 would, in general, result in stresses 

differing in both direction and magnitude. Stress is thus a second-order tensor quantity, because 

not only are magnitude and direction involved but also the orientation of the plane on which the 

stress acts is involved. 

NOTE:	 A complete description of the magnitudes and directions of stresses on all possible 
planes through point 0 constitutes the state of stress at point 0. 

NOTE:	 A knowledge of maximum stresses alone is not always sufficient to provide the best 
evaluation of the strength of a member. The orientation of these stresses is also 
important. 

In general, the overall stress state must be determined first and the maximum stress values 

derived from this information. The state of stress at a point can normally be determined by 

computing the stresses acting on certain conveniently oriented planes passing through the point of 

interest. Stresses acting on any other planes can then be determined by means of simple, 

standardized analytical or graphical methods. Therefore, it is convenient to consider the three 

mutually perpendicular planes as faces of a cube of infinitesimal size which surround the point at 

which the stress state is to be determined. 

Figure 5 illustrates the general state of 3D stress at an arbitrary point by illustrating the stress 

components on the faces of an infinitesimal cubic element around the point. 
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Infinitesimal Cube about Point of Interest 

σy 
τyx 

y 

τyz 

0 x 

P 

τzy
τzxσz 

τxyz σxτxz 

Figure 5.	 Stress Element Showing General State of 3D Stress at a Point Located Away from 
the Origin. 

Notation Convention for Fig. 5: 

Normal stresses are designated by a single subscript corresponding to the outward drawn 

normal to the plane that it acts upon. 

The rationale behind the double-subscript notation for shear stresses is that the first designates 

the plane of the face and the second the direction of the stress. The plane of the face is represented 

by the axis which is normal to it, instead of the two perpendicular axes lying in the plane. 

Stress components are positive when a positively-directed force component acts on a positive 

face or a negatively-directed force component acts on a negative face. When a positively-directed 

force component acts on a negative face or a negatively-directed force component acts on a positive 

face, the resulting stress component will be negative. A face is positive when its outwardly-directed 

normal vector points in the direction of the positive coordinate axis (Ref. 1, pp. 206-207). All 

stresses shown in Fig. 5 are positive. Normal stresses are positive for tensile stress and negative 

for compressive stress. Figure 6 illustrates positive and negative shear stresses. 

NOTE: τyx equals τxy. 

y 

- τ yx 

Figure 6.  Definition of Positive and Negative τyx.

+ τ yx 

xz 
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Writing the state of stress as tensor S: 

σx τxy τxz 
S = 9-components (1.2) 

τzx τzy σz

τyx σy τyz 

However, we have three equal pairs of shear stress: 

τxy  = τyx, τxz  = τzx, τyz  = τzy (1.3) 

Therefore, six quantities are sufficient to describe the stresses acting on the coordinate planes 

through a point, i.e., the triaxial state of stress at a point. If these six stresses are known at a point, it 

is possible to compute from simple equilibrium concepts the stresses on any plane passing through 

the point [Ref. 2, p. 79]. 

1.2 Principal Stresses, Planes and Directions 

The tensor S becomes a symmetric tensor if Eq. 1.3 is introduced into Eq. 1.2. A fundamental 

property of a symmetrical tensor (symmetrical about its principal diagonal) is that there exists an 

orthogonal set of axes 1, 2, 3 (called principal axes) with respect to which the tensor elements are all 

zero except for those on the principal diagonal: 

σ1 0 0 
S' = (1.4) 

0 0 σ3 

Hence, when the tensor represents the state of stress at a point, there always exists a set of mutually 

perpendicular planes on which only normal stress acts. These planes of zero shear stress are called 

principal planes, the directions of their outer normals are called principal directions, and the stresses 

acting on these planes are called principal stresses. An element whose faces are principal planes is 

called a principal element. 

For the general case, the principal axes are usually numbered so that:


σ1 ≥ σ2 ≥ σ3


0 σ2 0 

1.3 Basic Considerations of Strain 

The concept of strain is of fundamental importance to the engineer with respect to the 

consideration of deflections and deformation. 

A component may prove unsatisfactory in service as a result of excessive deformations, 

although the associated stresses are well within the allowable limits from the standpoint of fracture 

or yielding. 

Strain is a directly measurable quantity, stress is not. 
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Concept of Strain and State of Strain 

Any physical body subjected to forces, i.e., stresses, deforms under the action of these forces. 

Strain is the direction and intensity of the deformation at any given point with respect to a 

specific plane passing through that point. Strain is therefore a quantity analogous to stress. 

State of strain is a complete definition of the magnitude and direction of the deformation at a 

given point with respect to all planes passing through the point. Thus, state of strain is a tensor and 

is analogous to state of stress. 

For convenience, strains are always resolved into normal components, ε, and shear components, 

γ (Figs. 7 & 8). In these figures the original shape of the body is denoted by solid lines and the 

deformed shape by the dashed lines. The change in length in the x-direction is dx, while the change 
in the y-direction is dy. Hence, εx, εy and γ are written as indicated in these figures. 

y

x
 εx  = lim 	 dx 

x γyx  = lim 	 dx
dx	 x→0dy 

y 

y 

dx 

θ 
dx 

θ	
y

y→0y εy  = lim 	
dy 
y = tan θ ≈ θ x	 y→0 x0 

Figure 7.	 Deformation of a Body where the Figure 8. Plane Shear Strain. 
x-Dimension is Extended and the 
y-Dimension is Contracted. 

Subscript notation for strains corresponds to that used with stresses. Specifically, 

• γyx: shear strain resulting from taking adjacent planes perpendicular to the y-axis and 

displacing them relative to each other in the x-direction (Fig. 9). 

• εx, εy: normal strains in x- and y-directions, respectively. 

y 

x 

initial deformed 

rotated clockwise 

γyx > 0 

initial deformed 
rotated counter-clockwise 

γxy < 0 

Figure 9. Strains resulting from Shear Stresses ± γxy. 
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Sign conventions for strain also follow directly from those for stress: positive normal stress 
produces positive normal strain and vice versa. In the above example (Fig. 7), εx > 0, whereas 
εy < 0. Adopting the positive clockwise convention for shear components, γxy < 0, γyx > 0. In 
Fig. 8, the shear is γyx and the rotation is clockwise. 

NOTE: Half of γxy, γxz, γyz is analogous to τxy , τxz and τyz , whereas εx  is analogous to σx. 

εx 
1
2 

γxy 
1
2 

γxz 

T = 1 γyx εy
1 γyz2 2 

1 γzx 
1 γzy εz2 2 

It may be helpful in appreciating the physical significance of the fact that τ is analogous to γ/2 
rather than with γ itself to consider Fig. 10. Here it is seen that each side of an element changes in 
slope by an angle γ/2. 

γ 
2 

γ 
2 

Figure 10. State of Pure Shear Strain 

1.4 Plane Stress 

In Fig. 11, all stresses on a stress element act on only two pairs of faces. Further, these 
stresses are practically constant along the z-axis. This two-dimensional case is called biaxial stress 
or plane stress. 

y 

σy
τyx 

x 
σx 

τxy 

z 

0 

A


Figure 11.  State of Plane Stress
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The stress tensor for stresses in horizontal (x) and vertical (y) directions in the plane xy is: 

σx τxyS = 
τyx σy 

When the angle of the cutting plane through point 0 is varied from horizontal to vertical, the 
shear stresses acting on the cutting plane vary from positive to negative. Since shear stress is a 
continuous function of the cutting plane angle, there must be some intermediate plane in which the 
shear stress is zero. The normal stresses in the intermediate plane are the principle stresses. The 
stress tensor is: 

σ1 0S' = 
0 σ2 

where the zero principal stress is always σ3. These principal stresses occur along particular axes in 
a particular plane. By convention, σ1 is taken as the larger of the two principal stresses. Hence 

σ1 ≥ σ2 σ3  = 0 

In general we wish to know the stress components in a set of orthogonal axes in the xy plane, 

but rotated at an arbitrary angle, α, with respect to the x, y axes. We wish to express these stress 

components in terms of the stress terms referred to the x, y axes, i.e., in terms of σx, σy, τxy and the 

angle of rotation α. Fig. 12 indicates this new set of axes, x1 and y1, rotated by α from the original 

set of axes x and y. The determination of the new stress components σx1, σy1, τx1y1 is 

accomplished by considering the equilibrium of the small wedge centered on the point of interest 

whose faces are along the x-axis, y-axis and perpendicular to the x1 axis. For the general case of 

expressing stresses σx1 and τx1y1 at point 0 in plane x1, y1 in terms of stresses σx, σy, τxy and the 

angle α in plane x, y by force balances in the x1 and y1 directions, we obtain (see Ref. 1, p. 217): 

σx1  = σx cos2 α  + σy sin2 α  + 2τxy sin α cos α (1.5a) 

τx1y1  = (σy  - σx) sin α cos α  + τxy (cos2 α  - sin2 α) (1.5b) 

σy1  = σx sin2 α  + σy cos2 α  - 2τxy sin α cos α (1.5c) 

where the angle α is defined in Fig. 12. 

y 

x 

y x11 
α 

α 

y 

x 

x1α α 

(A) (B)

Figure 12.  (A) Orientation of Plane x1y1 at Angle α to Plane xy;


(B) Wedge for Equilibrium Analysis. 
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These are the transformation equations of stress for plane stress. Their significance is that 

stress components σx1, σy1 and τx1y1 at point 0 in a plane at an arbitrary angle α to the plane xy are 

uniquely determined by the stress components σx, σy and τxy at point 0. 

Eq. 1.5 is commonly written in terms of 2α. Using the identities: 

1 - cos 2α 1 + cos 2α
sin2α  = ; cos2α  = ; 2 sin α cos α  = sin 2α

2 2
we get 

σx1  = 
σx  + σy  + 

σx  - σy cos 2α  + τxy sin 2α (1.6a)
2 2

τx1y1  = -
σx  - σy sin 2α  + τxy cos 2α (1.6b)

2

σy1  = 
σx  + σy  -

σx  - σy cos 2α  - τxy sin 2α (1.6c)*
2 2

The orientation of the principal planes, in this two dimensional system is found by equating τx1y1 to 

zero and solving for the angle α. 

1.5 Mohr's Circle 

Equations 1.6a,b,c, taken together, can be represented by a circle, called Mohr’s circle of stress. 

To illustrate the representation of these relations, eliminate the function of the angle 2α from 

Eq. 1.6a and 1.6b by squaring both sides of both equations and adding them. Before Eq. 1.6a is 

squared, the term (σx + σy)/2 is transposed to the left side. The overall result is (where plane y1x1 

is an arbitrarily located plane, so that σx1 is now written as σ and τx1y1 as τ): 

[σ  - 1/2 (σx  + σy)]2  + τ2  = 1/4 (σx  - σy)2  + τxy
2 (1.7) 

Now construct Mohr’s circle on the σ and τ plane. The principal stresses are those on the σ-axis 

when τ = 0. Hence, Eq. 1.7 yields the principal normal stresses σ1 and σ2 as: 

σ1,2  = 
σx  + σy 

2 
± τxy 

2  + 
σx  - σy 

2 

2 

center of circle radius 

(1.8)


The maximum shear stress is the radius of the circle and occurs in the plane represented by a 

vertical orientation of the radius. 

* σy1 can also be obtained from σx1 by substituting α + 90˚ for α. 
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2σx - σy 1τmax  = ± τxy
2  + = σ1  - σ2 (1.9)

2 2 

The angle between the principal axes x1y1 and the arbitrary axis, xy can be determined from 

Eq. 1.6b by taking x1y1 as principal axes. Hence, from Eq. 1.6b with τx1y1 = 0 we obtain: 

2α  = tan-1 
σx

2τ
 -

xy 

σy 
(1.10) 

From our wedge we know an arbitrary plane is located an angle α from the general x-, y-axis set 

and α ranges from zero to 180˚. Hence, for the circle with its 360˚ range of rotation, planes 

separated by α in the wedge are separated by 2α on Mohr’s circle. Taking the separation between 

the principal axis and the x-axis where the shear stress is τxy, we see that Fig. 13A also illustrates 

the relation of Eq. 1.10. Hence, Mohr’s circle is constructed as illustrated in Fig. 13A. 

σx - σy

σx + σy
 2


2

(σy, τyx)y
 - τxy+ 

2 1− σ α σ 

τ 

2α(σ , 0)2 (σ , 0)1
(σ , τ )x xyx 

τxy 
2  + 

σx  - σy 

2 

2 

- + 

locus of yxτ locus of 

A B 

Figure 13.  (A) Mohr’s Circle of Stress; (B) Shear Stress Sign Convection for Mohr’s Circle.* 

When the principal stresses are known and it is desired to find the stresses acting on a plane 
oriented at angle φ from the principal plane numbered 1 in Fig. 14, Eq. 1.6 becomes: 

σφ  = σ1  + 
2 

σ2 ± σ1
2
 - σ2 cos 2φ (1.11) 

and 

τφ  = - σ1
2
 - σ2 sin 2φ (1.12) 

* For shear stresses, the sign convection is complicated since τyx and τxy are equal and of the same sign (see Figs 5 
and 6, and Eq. 1.3), yet one must be plotted in the convention positive y-direction and the other in the negative y-
direction (note the τ-axis replaces the y-axis in Fig. 13A). The convention adopted is to use the four quadrants of the 
circle as follows: positive τxy is plotted in the fourth quadrant and positive τyx in the second quadrant. 
Analogously, negative τxy lies in the first quadrant. Further, the shear stress at 90˚ on the circle is positive while 
that at 270˚ is negative. [Ref. 1, p. 220]
 Note that the negative shear stress of Eq. 1.12 is plotted in the first and third quadrants of Fig. 14, consistent with 

this sign convention. 



 

Note L.4 
Page 12 

σ1 - σ2 cos 2φ 

σ 

τ 

σ 

2φ2 1 

1 

σ1 + σ2 
2 

2

σ2 

σ1 - σ2 
2

 sin 2φ 

Figure 14.  Mohr’s Circle Representation of Eqs. 1.11 & 1.12. 

Example 1: 

Consider a cylindrical element of large radius with axial (x direction) and torque loadings 

which produce shear and normal stress components as illustrated in Fig. 15. Construct Mohr’s 

circle for this element and determine the magnitude and orientation of the principal stresses. 

From this problem statement, we know the coordinates σx, τxy are 60, 40 ksi and the 

coordinates σy, τyx are 0, 40 ksi. Further, from Eq. 1.10, 2α = tan-1 2(40)/(60) = 53˚. From these 

values and the layout of Fig. 13, we can construct Mohr’s circle for this example as shown in 

Fig. 16. Points 1 and 2 are stresses on principal planes, i.e., principal stresses are 80 and -20 ksi 

and points S and S' are maximum and minimum shear stress, i.e., 50 and -50 ksi. These results 

follow from Eqs. 1.8 and 1.9 as: 

260 - 0From Eq. 1.8 σ1, σ2  = 60 + 0 ± 402  + = 80, -20 ksi
2 2 

260 - 0From Eq. 1.9 τmax  = ± 402  + = ± 50 ksi
2 

From Fig. 13A σ at plane of τmax = (60 + 0)/2 = 30 ksi, i.e., at S and S' 

σ = 0y 

T 
F 

τxy = T 
A

 = 40 ksi 

σx = F 
A

 = 60 ksi 

σ 

τ 

37˚ 

2 1 

53˚= 2α30 
(-20, 0) 

y (0, 40) 
S (30, 50) 

(80, 0) 

x (60, 40) 

S' (30, -50)


Figure 15.  Example 1 Loadings. Figure 16.  Mohr’s Circle for Example 1.
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The principal element, i.e., its faces are principal planes, and the maximum shear element are 

shown in Fig. 17. 

NOTE: The angle between points y and S is the complement of 53˚ or 37˚, and plane y is rotated 
37˚/2 counter-clockwise from plane S. 

NOTE: The procedure for determining the orientation of these elements: point 1 is 53˚ counter-
clockwise from point x on the circle; hence the plane represented by 1 is half of 53˚ 
counter-clockwise from plane x. Similarly, the S plane is 143˚/2 counter-clockwise of 
plane x, or 37˚/2 clockwise of plane y. 

26.5˚ 

(2) 

(2) 

(1) 

(1) 

Plane perpendicular 
to x axis 
σ1 = 80 ksi 

σ2 = - 20 ksi 

S axis 

x axis 

Principal Element Maximum Shear Elements 

y axis y axis 
143˚ 

37˚ 2 
2 σ = 30 ksi Plane yPlane y 

τmax= 50 ksi 

x axis 
37˚ 
2 σ = 30 ksi 

S′ axis 
Plane x Plane x 

τmax= 50 ksi 

Figure 17.  Key Elements for Example 1. 

Mohr’s circle clearly illustrates these additional points: 

1.	 the principal stresses represent the extreme values of normal stress at the point in question; 

2.	 τmax  = 1
2 

σ1  - σ2 ; 

3.	 planes of maximum shear are always 45˚ removed from the principal planes; and 

4.	 normal stresses acting on maximum shear planes S and S' are equal to the algebraic average of 
principal stresses σ1 and σ2, i.e., 1/2 (σ1 + σ2). 

1.6 Octahedral Planes and Stresses 

Figure 18 illustrates the orientation of one of the eight octahedral planes which are associated 

with a given stress state. Each of the octahedral planes cut across one of the corners of a principal 

element, so that the eight planes together form an octahedron. 

The stresses acting on these planes have interesting and significant characteristics. First of all, 

identical normal stresses act on all eight planes. By themselves the normal stresses are therefore 

said to be hydrostatic and tend to compress or enlarge the octahedron but not distort it. 
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σoct  = σ1  + σ2  + σ3 (1.13a)
3 

Shear stresses are also identical. These distort the octahedron without changing its volume. 

Although the octahedral shear stress is smaller than the highest principal shear stress, it constitutes 

a single value that is influenced by all three principal shear stresses. Thus, it is important as a 

criterion for predicting yielding of a stressed material. 

τoct  = 1 σ1  - σ2
2  + σ2  - σ3

2  + σ3  - σ1
2 1/2 (1.13b)

3 
In cases in which σx, σy, σz, τxy, τxz and τyz are known: 

σoct  = 
σx  + σy  + σz (1.14a)

3


τoct  = 
3
1
 σx  - σy

2  + σy  - σz
2  + σz  - σx

2  + 6 τxy
2  + τxz

2  + τyz
2 1/2 (1.14b) 

σ1 

σ2 

σ3 σoct 

τ oct 

Figure 18.  Octahedral Planes Associated with a Given Stress State. 

1.7 Principal Strains and Planes 

Having observed the correspondence between strain and stress, it is evident that with suitable 

axis transformation one obtains an expression for the strain tensor T ' which is identical to that of 

stress tensor S' except that the terms in the principal diagonal are ε1, ε2, ε3. Hence, recalling from 

Section 1.3 that γ/2 corresponds to τ, strain relations analogous to Eqs. 1.8, 1.9 and 1.10 can be 

written as follows: 

2εx  - εy2ε1, ε2  = 
εx  + εy ± + (1.15)1 γxy2 2 2 

2εx  - εy2γmax  = ±  2 + (1.16)1 γxy2 2 

γxy2α  = tan-1 
εx  - εy 

(1.17) 
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Conclusion 

The preceding sections dealt separately with the concepts of stress and strain at a point. These 

considerations involving stresses and strains separately are general in character and applicable to 

bodies composed of any continuous distribution of matter. 

NOTE:	 No material properties were involved in the relationships, hence they are applicable to 

water, oil, as well as materials like steel and aluminum. 
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2.	 ELASTIC STRESS-STRAIN RELATIONS 

The relationships between these quantities are of direct importance to the engineer concerned 

with design and stress analysis. Generally two principal types of problems exist: 

1.	 Determination of the stress state at a point from a known strain state—the problem 

encountered when stresses are to be computed from experimentally determined strains. 

2.	 Determination of the state of strain at a point from a known stress state—the problem 

commonly encountered in design, where a part is assured to carry certain loads, and strains 

must be computed with regard to critical clearances and stiffnesses. 

We limit ourselves to solids loaded in the elastic range. Furthermore, we shall consider only 

materials which are isotropic, i.e., materials having the same elastic properties in all directions. 

Most engineering materials can be considered as isotropic. Notable exceptions are wood and 

reinforced concrete. 

2.1 Generalized Hooke’s Law 

Let us consider the various components of stress one at a time and add all their strain effects. 

For a uni-axial normal stress in the x direction, σx, the resulting normal strain is 

εx  = σx	 (2.1)
E 

where E is Young’s modulus or the modulus of elasticity. 

Additionally this stress produces lateral contraction, i.e., εy and εz, which is a fixed fraction of 

the longitudinal strain, i.e., 

εy  = εz  = - νεx  = - ν σx . (2.2)
E

This fixed fraction is called Poisson’s ratio, ν. Analogous results are obtained from strains due to 

σy and σz. 

The shear-stress components produce only their corresponding shear-strain components that 

are expressed as: 

γzx	  = τzx , γxy  = 
τxy , γyz  = 

τyz (2.3a,b,c)
G G G 

where the constant of proportionality, G, is called the shear modulus. 
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For a linear-elastic isotropic material with all components of stress present:


εx  = 1
 σx  - ν σy  + σz (2.4a)
E 

εy  = 
E
1 σy  - ν σz  + σx (2.4b) 

εz  = 1 σz  - ν σx  + σy (2.4c)
E 

γxy  = 
τ
G
xy (2.5a) same as (2.3) 

γyz  = 
τyz (2.5b)
G 

γzx  = τzx (2.5c)
G 

These equations are the generalized Hooke’s law. 

It can also be shown (Ref 1, p. 285) that for an isotropic materials, the properties G, E and ν 
are related as: 

G = 
2 (1 

E
+ ν)

 . (2.6) 

Hence, 

γxy  = 
2 (1 + ν) τxy (2.7a)

E 

γyz  = 
2 (1 

E
+ ν) τyz (2.7b) 

γzx  = 
2 (1 + ν) τzx . (2.7c)

E 

Equations 2.4 and 2.5 may be solved to obtain stress components as a function of strains: 

σx  = E 1 - ν εx  + ν εy  + εz (2.8a)
(1 + ν) (1 - 2ν) 

E 1 - ν εy  + ν εz  + εx (2.8b)σy  = 
(1 + ν) (1 - 2ν)


σz  = E
 1 - ν εz  + ν εx  + εy (2.8c)
(1 + ν) (1 - 2ν) 

τxy  = 
2 (1 

E
+ ν) 

γxy  = Gγxy (2.9a) 

τyz  = 
2 (1 

E
+ ν) 

γyz  = Gγyz (2.9b) 

τzx  = 
2 (1 

E
+ ν) 

γzx  = Gγzx . (2.9c) 
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For the first three relationships one may find: 

εx  + εy  + εz (2.10a)σx  = 
(1 

E
+ ν) 

εx  + 
(1 -

ν 
2ν) 

εx  + εy  + εz (2.10b)σy  = 
(1 

E
+ ν) 

εy  + 
(1 -

ν 
2ν) 

εx  + εy  + εz  . (2.10c)σz  = 
(1 

E
+ ν) 

εz  + 
(1 -

ν 
2ν) 

For special case in which the x, y, z axes coincide with principal axes 1, 2, 3, we can simplify the 

strain set, Eqs. 2.4 and 2.5, and the stress set Eqs. 2.8 and 2.9, by virtue of all shear strains and 

shear stresses being equal to zero. 

ε1  = 1 σ1  - ν σ2  + σ3 (2.11a)
E 

ε2  = 1 σ2  - ν σ3  + σ1 (2.11b)
E 

ε3  = 1 σ3  - ν σ1  + σ2 (2.11c)
E


σ1  = E
 1 - ν ε1  + ν ε2  + ε3 (2.12a)
(1 + ν) (1 - 2ν)


σ2  = E
 1 - ν ε2  + ν ε3  + ε1 (2.12b)
(1 + ν) (1 - 2ν)


σ3  = E
 1 - ν ε3  + ν ε1  + ε2  . (2.12c)
(1 + ν) (1 - 2ν) 

For biaxial-stress state, one of the principal stresses (say σ3) = 0, Eqs. 2.11a,b,c become: 

ε1  = 1 σ1  - νσ2 (2.13a)
E 

ε2  = 1 σ2  - νσ1 (2.13b)
E 

ε3  = - ν σ1  + σ2  . (2.13c)
E 

In simplifying Eqs. 2.12a,b,c for the case of σ3  = 0, we note from Eq. 2.12c that for σ3 to be zero, 

ε3  = - ν ε1  + ε2  . (2.14)
1 - ν 

Substituting this expression into the first two of Eqs. 2.12a,b,c gives: 

σ1  = E ε1  + νε2 (2.15a) 
1 - ν2 

σ2  = E ε2  + νε1 (2.15b) 
1 - ν2 

σ3  = 0 . (2.15c) 
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In case of uniaxial stress Eqs. 2.13 and 2.15 must, of course reduce to: 

ε1  = 1 σ1	 (2.16a)
E 

ε2  = ε3  = - ν σ1 (2.16b)
E 

σ1  = Eε1 (2.17a) 

σ2  = σ3  = 0 . (2.17b) 

2.2 Modulus of Volume Expansion (Bulk Modulus) 

k may be defined as the ratio between hydrostatic stress (in which σ1 = σ2 = σ3) and 

volumetric strain (change in volume divided by initial volume), i.e., 

k = σ/(ΔV/V). (2.18) 

NOTE:	 Hydrostatic compressive stress exists within the fluid of a pressurized hydraulic cylinder, 

in a rock at the bottom of the ocean or far under the earth’s surface, etc. 

Hydrostatic tension can be created at the interior of a solid sphere by the sudden 

application of uniform heat to the surface, the expansion of the surface layer subjecting 

the interior material to triaxial tension. For σ1 = σ2 = σ3  = σ, Eqs. 2.11a,b,c show that: 

ε1  = ε2  = ε3  = ε  = σ 1 - 2ν  .
E 

This state of uniform triaxial strain is characterized by the absence of shearing deformation; an 

elemental cube, for example, would change in size but remain a cube. The size of an elemental cube 

initially of unit dimension would change from 13 to (1 + ε)3 or to 1 + 3ε +  3ε2 + ε3. If we 

consider normal structural materials, ε is a quantity sufficiently small, so that ε2 and ε3 are 

completely negligible, and the volumetric change is from 1 to 1 + 3ε. The volumetric strain, ΔV/V, 

is thus equal to 3ε or to: 

ΔV  = 3ε	 = 
3σ (1 - 2ν) 

. (2.19)
V E

Hence, 
k ≡ 

3
σ
ε

 = 
3 (1 

E
- 2ν)

 . (2.20) 

Now ν ≤  0.5, so that k cannot become negative. A simple physical model of a representative 

atomic crystalline structure gives: 

ν  = 1/3 , (2.21) 
so that 

k = E  .	 (2.22) 
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3. THIN-WALLED CYLINDERS AND SPHERE 

3.1 Stresses 

• Stresses in a Thin-Walled Cylinder: 

Consider a portion of the cylinder sufficiently remote from the ends to avoid end effects. 

The equation of equilibrium of radial forces (Fig. 19) acting on the element is: 

dφ 
ridφdL  = 2σt,avtdL sin (3.1)pi 2 

yielding piriσt,av  = .	 (3.2)
t

when sin (dφ/2) is approximated by dφ/2, which is valid for small dφ. This is a correct expression 

for the average tangential stress (hoop stress) regardless of cylinder thickness. 

NOTE:	 It is only when this equation is used as an approximation for the maximum tangential 

stress, σt,max, that the thickness t must be very small in comparison with the cylinder 

diameter. 

Equation 3.1 can be modified to give a good quick estimate of the maximum tangential stress due to 

internal pressure for cylinders of moderate thickness by replacing ri with rav, which we label R: 

R = ri  + t  .	 (3.3)
2

Thus, 

σt,max ≈ piR 
(3.4)

t 

p 

t 

2ri 
2ro 

i dφ 
R 

dL 
dφ/2p r dφdLii 

σ tdLt,av

Figure 19.  Radial Forces in an Internally Pressurized Thin-Walled Cylinder. 
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The following are errors in estimating σt,max from Eqs. 3.2 or 3.4 compared to the thick-walled 

cylinder results: 

% Error Using % Error Using 
t/ri Eq. 3.2 Eq. 3.4 

0.1 5 (low) 0.5 (low) 
0.2 10 (low) 1.0 (low) 
0.5 23 (low) 3.8 (low) 
1.0 40 (low) 10.2 (low) 

If the ends are closed, the cylinder is also subjected to an axial force of magnitude piπri
2. This is 

distributed over an area of cross section that can be expressed as: 

A = π ro2  - ri
2  = 2πRt . (3.5) 

Thus the average axial tensile stress can be expressed by: 

σa,av  = 
piri

2 
= 

piri
2 

. (3.6) 
ro2  - ri

2 2ravt

For the thin-walled case, ri ≈ rav ≡ R since ri = R(1 - 0.5t/R). Hence, Eq. 3.6 reduces to: 

σa,av  = 
piR 

. (3.7)
2t

Thus the axial stress is approximately half the tangential stress. 

• Stresses in a Thin-Walled Sphere: 

From a force balance these stresses can be determined to be 

σa,av  = σt,av  = 
pR 

(3.8)
2t 

3.2 Deformation and Strains 

The deformation of the diameter of a thin-walled cylinder or sphere caused by the internal 

pressure is to be determined. Note that the state of stress at the inner surface is triaxial and is not 

plane stress. The principal stresses of the inner surface are σ1 = σφ, σ2 = σz and σ3 = -p. 

However, σ3 = -p is so small compared to σ1 and σ2 that it can be neglected when considering 

strains. Thus, the state of stress in thin-walled pressure vessels is usually considered to be plane 

stress. 

The deformation of such pressure vessels is influenced by the tangential and axial (transverse 

for the sphere) stresses, and hence use must be made of the following relations obtained from Eqs. 

2.4, 2.5 and 2.8, respectively, with σy = 0. 
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εx  = σx  - νσz (3.9a)
E E 

εy  = - ν σx  + σz (3.9b)
E 

εz  = σz  - νσx (3.9c)
E E 

γ  = 
τxy (3.9d)
G 

σx  = E εx  + νεz (3.10a) 
1 - ν2 

σz  = E εz  + νεx (3.10b) 
1 - ν2 

to express Hooke’s law for plane stress. Equations 3.10a,b are obtained from Eqs. 2.8a and 2.8c 

upon inspection of εy evaluated from Eq. 2.8b with σy taken as zero. 

Let σφ, σz, εφ and εz represent the tangential and axial stress and strain, respectively, in the wall. 

The substitution of these symbols in Eqs. 3.9a,b,c, i.e., x ≡ φ and z = z, gives: 

εφ  = 
σ
E
φ 

- ν σ
E

z (3.11) 

σz 
σφεz  = - ν . (3.12)

E E

• Closed-End Cylinder: 

For the strains in the closed-end cylinder, the values of σφ and σz as derived in Eqs. 3.4 

and 3.8, respectively, are substituted into Eqs. 3.11 and 3.12 to give: 

pR ν pRεφ  = 1 - = 
pR

 (2 - ν) (3.13)
E t 2t 2Et

pR ν pRεz  = 1 - = 
pR

 (1 - 2ν) . (3.14)
E 2t t 2Et

Let the change in length of radius R be Δr when the internal pressure is applied. Then the change in 

length of the circumference is 2πΔr. But the circumferential strain, εφ, is, by definition, given by the 

following equation: 

εφ  = 2πΔr  = Δr . (3.15)
2πR R

By combining Eqs. 3.15 and 3.13 we get: 

Δr = 
pR2 

(2 - ν) . (3.16)
2Et
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The change in length, Δl, for a closed-end cylinder is equal to: 

Δl  = εzl (3.17) 

or pRl
Δl  = (1 - 2ν) (3.18)

2Et

• Sphere: 

σz  = σφ  = 
pR 

(3.19)
2t 

Thus, from Eq. 3.11: 
pR ν pRεφ  = 1 - = 

pR
 (1 - ν) . (3.20)

E 2t 2t 2Et

By combining Eq. 3.20 with Eq. 3.15, we obtain: 

Δr = 
pR2

 (1 - ν) . (3.21)
2Et

3.3 End Effects for the Closed-End Cylinder 

Figure 20 illustrates a cylinder closed by thin-walled hemispherical shells. They are joined 

together at AA and BB by rivets or welds. The dashed lines show the displacements due to internal 

pressure, p. These displacements are given by Eqs. 3.16 and 3.21 as: 

ΔRc  = 
pR2

 (2 - ν) (3.22a)
2Et

ΔRs  = 
pR2

 (1 - ν) (3.22b)
2Et

The value of ΔRc is more than twice that of ΔRs for the same thickness, t, and as a result the 

deformed cylinder and hemisphere do not match boundaries. To match boundaries, rather large 

shearing forces, V, and moments, M, must develop at the joints as Fig. 20 depicts (only those on the 

cylinder are shown; equal but opposite shears and moments exist on the ends of the hemispheres). 

This shear force is considerably minimized in most reactor pressure vessels by sizing the 

hemisphere thickness much smaller than the cylinder thickness. For example, if the hemisphere 

thickness is 120 mm and the cylinder thickness is 220 mm, for ν = 0.3, then the ratio ΔRc to ΔRs is 

2 - νΔRc = ts = 1.32
1 - νΔRs

tc 
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Α 
V 

Β 
V 

ΔRc 

Α 

Β 

Rs 

ΔRs 

Μ Μ 

ΜΜ 

V 

V ≡ Shearing Forces 

V 

Figure 20. Discontinuities in Strains for the Cylinder (ΔRc) and the Sphere (ΔRs). 

The general solution of the discontinuity stresses induced by matching cylindrical and 

hemisphere shapes is not covered in these notes. However, a fundamental input to this solution is 

the matching of both displacements and deflections of the two cylinders of different wall 

thicknesses at the plane they join. Thus, the relationship between load, stress, displacement and 

deflection for cylinders and hemispheres are derived. These relations are presented in Tables 1 

and 2, respectively. 

Table 1. Relationship Between Load, Stresses, Displaced and Deflection for the Cylinder 
(equations cited are from Ref. 2) 

Load 

Stresses 
σt, σl, σr 

σθ, σz, σr 

Displacement 

uo 

Deflection 

θo 

p 
pR 
t

 , 
pR 
2t

 , -
p 
2 

pR2 

2tE 
2 - ν  + ν t 

R 
0 

Mo 

Edge 
Moment 
per Unit 
Perimeter 
Length 

EMo 

2β2
DR 

± γ 6Mo 

t2
 , ± 6Mo 

t2
 , 0 

(Eq. 7.3.22, (Eq. 7.3.21, 
p. 7.3-12) p. 7.3-11) 

Note: uo = 
Mo 

2β2D
 ; so first term 

= 
Euo 

R
 . 

Mo 

2β2
D 

(Eq. 7.3.18, p. 7.3.7) 

units 
F ⋅  L/L 

1 
L2 

F 
L2

 L3
 = L 

- Mo 

βD 

(Eq. 7.3.19, p. 7.3.8) 

dimensionless 

Table 1 continued on next page 
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Table 1. Relationship Between Load, Stresses, Displaced and Deflection for the Cylinder (cont’d) 

Qo 

Edge Shear 
Force 

per Unit 
Perimeter 
Length 

EQo 

R2β3
D

 , 0 , 0 

(Eq. 7.3.22, 
p. 7.3-12) 

Note: uo = 
Qo 

2β3D
 ; so first term 

= 
uoE 

R
 . 

Qo 

2β3
D 

(Eq. 7.3.18, p. 7.3.7) 

units F/L 
1 
L3

 FL
 = L 

-
Qo 

2β2
D 

(Eq. 7.3.19, p. 7.3.8) 

dimensionless 

where Plate Flexural Rigidity: 

D = Et3 

12 1  - ν2
 , units F 

L2
 L3 

β4
 = Et 

4R2D
 = 

3 1  - ν2 

R2 t2 
1 
L2 

1 
L2 

Equations and pages cited are from Ref. 2. 

Table 2. Relationship Between Load, Stresses, Displaced and Deflection for the Hemisphere 

Load 
Stresses 
σt, σl, σr 

Displacement
δo 

Deflection 
θo 

p 
pR 
2t

 , 
pR 
2t

 , -
p 
2 

pR2 

2tE 
1− ν+ ν 

t 

R 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

Mo 

Edge 
Moment 
per Unit 
Perimeter 
Length 

2λ2
Mo 

tR 
± γ 6Mo 

t2
 , ± 6Mo 

t2
 , 0 

Note: 2λ2
Mo 
t

 = δo 
E

 ; so first 

term = Eδo 
R

 . 

2λ2
Mo 

Et 
4λ3

Mo 
REt 

Qo 

Edge Shear 
Force 

per Unit 
Perimeter 
Length 

2λQ0 

t
 , 0 , 0 

Note: 
2λQ0 

t
 = Eδo 

R
 . 

2RλQ0 

Et 
2λ2

Qo 

Et 

where 

λ  = βR ; β4 = 
3 1 −ν 2( ) 

R2t2 
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4. THICK-WALLED CYLINDER UNDER RADIAL PRESSURE [Ref. 1, pp. 293-300] 

• Long Cylinder Plane Strain 

The cylinder is axially restrained (εz = 0) at either end and subjected to uniform radial pressure, 

not body forces. The cylinder cross section and stresses on an element are illustrated in Fig. 21. 

pi ri 

ro 
po 

dφ rσ

r 
r + dr 

dφ 
2

φσ

φσ
dφ 
2 

rσ + d rσ 

Figure 21.  Force Balance and Displacements in a Pressurized Cylinder. 

The relevant elastic equation set when azimuthal symmetry prevails is 

•	 Strain–Displacement Relations 

εr  = du , εφ  = u , γrφ  = dv - v (4.1a,b,c)
dr r dr r 

where u is the outward radial displacement and v is the φ direction displacement. Since the effect of 

internal pressure is to move the material in the radial direction without any rotation, both v and γrφ 
should be zero. This will be demonstrated formally from the boundary conditions. 

•	 Stress–Equilibrium Relations (for forces in the r and φ directions)


dσr 
σr  - σφ dτrφ 2τrφ


+ = 0 , + 	 = 0 . (4.2a,b)
dr r dr	 r

•	 Stress–Strain Relations

1 [ ( )]
εr = σr −γ σφ + σz	 (4.3a)
E 

εφ = 
E

1 [σφ −γ  σ( z +σ r )] (4.3b) 

εz = 0 = 
1 [σz −γ σ(	 r +σ φ)] (4.3c)
E 
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The strain-displacement relations can, by elimination of the displacement variables, be 
combined as a compatibility (of strain) equation: 

dεφ εφ −ε r+ = 0 (4.4)
dr r 

Finally the boundary conditions are: 
ri  = - pi ; σr ro  = - po (4.5a)σr 

ri  = τrφ ro  = 0 (4.5b)τrφ 

Note that the radial dimension is assumed to be free of displacement constraints. 

4.1 Displacement Approach 

When displacements are known, it is preferable to use this solution approach. In this case we 
solve for the displacements. Proceeding, solve Eq. 4.3 for stresses and substitute them into the 
stress–equilibrium relations of Eq. 4.2 to obtain: 

dεφ εφ  - εr
(1 - ν) dεr  + 

εr  - εφ 
+ ν + = 0 (4.6a)

dr r dr r

dγrφ 2γrφ 
+ = 0 (4.6b)

dr r

Substituting Eq. 4.1 in Eq. 4.6 and simplification show that the displacements u and v are 
governed by the equations: 

d2u  + 1 du  - u  = d 1 d (ru)  = 0 (4.7a)r drdr2 r dr r2 dr 

d2v + 1 dv  - v = d 1
r dr

d (rv)  = 0 . (4.7b) 
dr2 r dr r2 dr 

Successive integration of these equations yields the displacement solutions 

u = C1r + C2  ; v = C3r + C4 (4.8a,b)
2 r 2 r 

where the constants of integration are to be determined by the stress boundary conditions 
(Eqs. 4.5a,b). With the use of Eqs. 4.8a,b, the strain and stress solutions are obtained from Eq. 4.1 
and 

σr  = E (1 - ν)εr  + νεφ (4.9a)
(1 + ν) (1 - 2ν) 

σφ  = E (1 - ν)εφ  + νεr (4.9b)
(1 + ν) (1 - 2ν) 

τrφ  = Gγrφ (4.9c) 

as 
= C1  - C2  , = C1  + C2  , = - 2C4 (4.10a,b,c)εr 2 r2

εφ 2 r2
γrφ

r2 
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σr  = E C
2
1 - (1 - 2ν) C

r2
2 (4.11a)

(1 + ν) (1 - 2ν) 

σφ  = E C
2
1 + (1 - 2ν) C

r2
2 (4.11b)

(1 + ν) (1 - 2ν) 

νEC1σz  = ν σr  + σφ (1 + ν) (1 - 2ν) 
(4.11c) 

τrφ  = - 2GC4 . (4.11d) 
r2

By virtue of the boundary conditions, Eqs. 4.5a,b, the first and last of Eq. 4.11 yield the 
following equations for the determination of the constants C1 and C2. 

C1 - (1 - 2ν) C2 = -
(1 + ν) (1 - 2ν) 

pi (4.12a)
2 r2

i 
E

C1 - (1 - 2ν) C2 = -
(1 + ν) (1 - 2ν) 

po (4.12b)
2 r2o E

C4  = 0 (4.12c) 

The solutions for C1 and C2 are 

C1 = 
(1 + ν) (1 - 2ν) piri

2  - poro2 
(4.13a)

2 E ro2  - ri
2 

(1 + ν) pi  - po  ri
2ro2 

. (4.13b)C2  = 
E ro2  - ri

2

As to the constant C3, it remains undetermined. However, with C4 = 0, Eq. 4.8 shows that v = C3r/2 
which corresponds to a rigid-body rotation about the axis of the cylinder. Since this rotation does 
not contribute to the strains, C3 is taken as zero. Hence Eqs. 4.11a,b,c and Eq. 4.8a become: 

ro/ri 
2 2roσr  = 1 1 - pi  - 1 - 1 po (4.14a)riro/ri

2  - 1 r/ri 
2 r/ri 

2 

ro/ri 
2 2roσφ  = 1 1 + pi  - 1 + 1 po (4.14b)riro/ri

2  - 1 r/ri 
2 r/ri 

2 

2roσz  = 2ν pi  - Plane Strain! (4.14c)poriro/ri
2  - 1 

(1 + ν) r/ri  ri ro/ri 
2 2 porou = (1 - 2ν) + 

pi - (1 - 2ν) + 1 (4.14d)riE Ero/ri
2  - 1 r/ri 

2 r/ri 
2 

4.2 Stress Approach 

In this case we solve directly for the stresses and apply the boundary conditions as before. 
Thus, re-expressing the stress-strain relations (Eq. 4.3) directly as strain when εz = 0 we get: 
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εr  = 1 + 	ν (1 - ν) σr  - νσφ (4.15a)
E 

εφ  = 1 + ν (1 - ν) σφ  - νσr (4.15b)
E 

τrφγrφ  = 	 , (4.15c)
G

and then substituting them into Eq. 4.4 upon simplification yields 

(1 −ν) 
dσφ −ν 

dσr + 
σφ −σ r = 0 .	 (4.16)

dr dr r 

By the first stress-equilibrium relation in Eq. 4.2, this equation is reduced to the simple form 

d σr  + σφ	  = 0 . (4.17)
dr 

Integration of this equation and the second of Eq. 4.2 yields 

σr +σ φ = C1 ; τrφ = 
C

2
2 .	 (4.18a,b) 

r

Substitution of the relation σφ = C1 - σr in Eq. 4.2, transposition, and integration yield 

σr  = C
2
1 + C

r2
3 , (4.19) 

where C1, C2 and C3 are constants of integration. Applying the boundary conditions we finally get 

C1  = 
piri

2  - poro2  , C2  = 0 , C3  = 
pi  - po  ri

2ro2 
. (4.20a,b,c) 

ro2 ri
2	 ro2 ri

2- -

With these values for the constants, Eqs. 4.18, 4.19 and the relation σz = ν(σr + σφ), the complete 

stress solution is explicitly given. This solution can then be substituted in Eqs. 4.15a and 4.15b to 

determine εr and εφ and, finally, u is determined by the relation u = rεφ. 

NOTE:	 Since the prescribed boundary conditions of the problem are stresses, it is evident that the 

stress approach in obtaining the solution involves simpler algebra than the displacement 

approach. 


