Chapter 3

Collisions in Plasmas

3.1 Binary collisions between charged particles

Reduced-mass for binary collisions:

Two particles interacting with each other have forces
Fi; force on 1 from 2.

F'; force on 2 from 1.

By Newton’s 3rd law, Fis = —Fyy.

Equations of motion:

mit; = Fia ; mats = Fo (3.1)
Combine to get
#)— iy — Py (mil + m%) (3.2)
which may be written ,
mumg - d” (1 —13) — Fis (3.3)

my + Mo dt?

If Fi; depends only on the difference vector vy — rs, then this equation is identical to the
equation of a particle of “Reduced Mass” m, = % moving at position r = ry — ry with
respect to a fixed center of force:

mr'f = Flg(r) . (34)

This is the equation we analyse, but actually particle 2 does move. And we need to recognize
that when interpreting mathematics.

If F5; and r; — ry are always parallel, then a general form of the trajectory can be written
as an integral. To save time we specialize immediately to the Coulomb force

_ %4z T (3.5)

dmeq 1

Solution of this standard {Newton’s) problem:
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Figure 3.1: Geometry of the collision orbit

Angular momentum is conserved:

m,r20 = const. = m.bu, (8 clockwise from symmetry)

Substitute u =1 then 6 = b — 42 by
I8 T

Also
;o . ¢l laduw, . du
T dtw w2 df ' de
d*u 5 o d%u
T = *erl @ 8 *(er]_) U @

Then radial acceleration is

: dZU ‘F12|
F—r (vl)u(d82+> -
lLe.
d*u Ppe G190 1
dg? 4meg m, (bvy)?
This orbit equation has the elementary solution
1
u=—-— = (Ccosf — L 5
r dmeq m, (buy)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

The sin# term is absent by symmetry. The other constant of integration C, must be deter-

mined by initial condition. At initial (far distant) angle, 8y, vy = — = 0. So
1
0= Ccost — B e 5
dmeg m, (buy)
There:
?:‘1 = U = *b’U17|1 == +be10 SlI’lfgl
Hence i I/C'b ;
sin 6y -
tan @) = = —
17 cos 6, ﬂ‘iz — (bm)z /C’ b
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where
bgg = 5 - (3.15)

Notice that tan#; = —1 when & = bgg. This is when 0, = —45° and y = 90°. So particle
emerges at 90° to initial direction when

b = by “O0° impact parameter” (3.16)
Finally:
1 1 b2\ 2
C = —gcosecf?l = (1 + 5)20) (3.17)

3.1.1 Frames of Reference

Key quantity we want is the scattering angle but we need to be careful about reference
frames.

Most “natural” frame of ref is “Center-of-Mass” frame, in which C of M is stationary. C of

M has position:
miry 4+ mols

R 1Rk (3.18)
my -+ Mg
and velocity (in lab frame)
y = Vi mava (3.19)
My + Mo
Now
o= R+ 2y (3.20)
m1 + Mo
i
= R-—— 3.21
= my + mgy (321

So motion of either particle in C of M frame is a factor times difference vector, r.
Velocity in lab frame is obtained by adding V to the C of M velocity, e.g. =28 4 V.

my+me

Angles of position vectors and velocity differences are same in all frames.

Angles (i.e. directions) of velocities are not same.

3.1.2 Scattering Angle
In C of M frame is just the final angle of r.
—20+x—m (3.22)

(01 is negative)

(3.23)
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Figure 3.2: Relation between ¢; and y.

tand; = tan (K = E) — cotX (3.24)
2 2 2
So

X b
t= = — 3.25
co 5 o ( )

X boo
tan= = — 3.26
an o 3 (3.26)

But scattering angle {defined as exit velocity angle relative to initial velocity) in lab frame
is different.

Final velocity in CM frame

m

v = v COS sin —_— 2% 4 {cos sin 3.27
oM 1CM( Xes Xc) M+ g 1( Xes Xc) ( )

| xc = x and vy is initial relative velocity]. Final velocity in Lab frame

math ot .
Ve = Vg, +V = (V + = coS Y, sin c) 3.28
L oM my + mg x my + Mg X ( )
So angle is given by
V4 7 oS X, V mi+m
cot vy = BUC Rl = — LT cosecy. + cob v, (3.29)
m SIN Xz 7] ma

For the specific case when my is initially a stafionary farget in lab frame, then

y o= and hence (3.30)
M + Ma
cotyp = :Z;COS@CXc + cot v, (3.31)

This is exact.

1

Small angle approximation (cot xy — L cosecy — % gives

1 T 1 1 o
— ==t — & XL X (3.32)
XL Mz Xe Xe my + my

So small angles are proportional, with ratio set by the mass-ratio of particles.
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Center-of-Mass Frame

Particle 1

Laboratory Frame,
Stationary Target

Particle 1

Figure 3.3: Collisions viewed in Center of Mass and Laboratory frame.

3.2 Differential Cross-Section for Scattering by Angle

Rutherford Cross-Section
By definition the cross-section, o, for any specified collision process when a particle is passing
through a density ns of targets is such that the number of such collisions per unit path length
is na0.
Sometimes a continuum of types of collision is considered, e.g. we consider collisions at

different angles () to be distinct. In that case we usually discuss differential cross-sections
(e.g fé—i) defined such that number of collisions in an (angle) element dx per unit path length

is nadz. Note that %9 s just notation for a number. Some authors just write a(x), but I
dx dx
find that less clear.]

Normally, for scattering-angle digscrimination we discuss the differential cross-section per unit

solid angle:
do

Qe

(3.33)

This is related to scattering angle integrated over all azimuthal directions of scattering by:
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Figure 3.4: Scattering angle and solid angle relationship.

dQ), = 27 sin xdyx (3.34)
So that since g p
T T
dQsdQs = adx (3.35)
we have
do 1 do
(3.36)

dQ, N 2mwsiny a

Now, since y is a function (only) of the impact parameter, b, we just have to determine the
number of collisions per unit length at impact parameter b.

Figure 3.5: Annular volume corresponding to db.

Think of the projectile as dragging along an annulus of radius & and thickness db for an
elementary distance along its path, df. It thereby drags through a volume:

dé2mbdb . (337
Therefore in this distance it has encountered a total number of targets

de2mbdb . ny (3.38)
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at impact parameter b(db). By definition this is equal to dﬁ zdbny. Hence the differential

cross-section for scattering (encounter) at impact parameter b is

do
—ob .
"

Again by definition, since y is a function of b

—dr = —db = =

do do da
dy db dy

ldb/dy is negative but differential cross-sections are positive.]

Substitute and we get

dr 1 do|db| b
dQ, 2msiny db |dy|  sin dy
[This is a general result for classical collisions.]
For Coulomb collisions, in C of M frame,
Y b
b)) ==
o ( 2 ) boo
db d bao
= a = bqgg & cot% = —70086025 .
Hence
do bgo COt 5 bgo aX
= ————2 — cosec*>
dfl, siny 2

2 X /ain X
bZ, cosi/sin¥ 1
im X X qip2 X
2 281H2C082 sIn” 3
g
béo

o dx
4sin S

This is the Rutherford Cross-Section,

do b3,

ao, 4sin4§

for scattering by Coulomb forces through an angle ¥ measured in C of M frame.

Notice that Cfﬁi — 00 as y — 0.

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

This is because of the long-range nature of the Coulomb force. Distant collisions tend to

dominate. (x — 04 b — o0).
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3.3 Relaxation Processes

There are 2 {main) different types of collisional relaxation process we need to discuss for a
test particle moving through a background of scatterers:

1. Energy Loss (or equilibrium)

2. Momentum Loss (or angular scattering)

The distinction may be illustrated by a large angle {90°) scatter from a heavy {stationary)
target.

If the target is fixed, no energy is transferred to it. So the energy loss is zero (or small if
scatterer is just ‘heavy’). However, the momentum in the x direction is completely ‘lost’ in
this 90° scatter.

This shows that the timescales for Energy loss and momentum loss may be very different.

3.3.1 Energy Loss

For an initially stationary target, the final velocity in lab frame of the projectile is

Y Mot Mgt
v = ( el Y 2L cosye, — " sin Xc> (3.48)
my My M+ M my + Mg

So the final kinetic energy is

1 1 2 2
K' = —mpf = _—mw? <ml> + &22 COS X (3.49)
2 2 my + Mg (my + ma)
2
7y 2 .2
cos® X, + sin® x. } {3.50)
{mq + m2)2 ( )
1 3 lemg
= —mysl+-——" {cosx,— 1)} (3.51)
2 ! { (m1 + m2)2
Zmym
2 174562 . a3 Xe
= —mwisl +————= Z2sin® — 3.52
2 1t { (m]_ + m2)2 2 } ( )
Hence the kinetic energy lost is AK = K — K’
1 4 e
= —mMyUz 7m1m2 5 Siﬂ2 Xi (353)
2 (my + mg) 2
1 4 1 o b
= —myl Tz 5 5 [using cot Xe — (3.54)
2 (1 + ma) (bi) +1 2 b
a0

{exact). For small angles v < 1 ie. b/bgy > 1 this energy lost in a single collision is

approximately
2
1 4 b
(Wg) s (90) (3.55)
2 (my + mg) b
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If what we are asking is: how fast does the projectile lose energy? Then we need add up the
effects of all collisions in an elemental length d¢ at all relevant impact parameters.

The contribution from impact parameter range db at b will equal the number of targets
encountered times AK:

2
1 4 b
nodf2mbdh  Smgp?—— a2 (260 (3.56)
encounters

Loss per encounter (AK)

This must be integrated over all b to get total energy loss.

4 boo )
dK = ngdt K —2"2 f (90) 27bdb (3.57)
(my +mg) b
50 dK
E Ko TS I b (3.58)
dt (ma + ma)

We see there is a problem both limits of the integral (b — 0, b — oo) diverge logarithmically.
That is because the formulas we are integrating are approximate.

1. We are using small-angle approx for AK.

2. We are assuming the Coulomb force applies but this is a plasma so there is screening.

3.3.2 Cut-offs Estimates

1. Small-angle approx breaks down around & = byy. Just truncate the integral there;
ignore contributions from & < bgq.

2. Debye Shielding says really the potential varies as

exp { — 1
@ o —M instead of o — (3.59)
r r

so approximate this by cutting off integral at b = Ap equivalent to

buin = boo.  Dmax = Ap. (3.60)
dK s 3
— = Knyg———— 87b:, In|A 3.61
A 2(m1+m2)2 90 | | ( )

1
A~ Mo <60T€>2 _ e (3.62)
baq ne? dmegm,vi
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So Coulomb Logarithm is ‘In A’

AD €l 7 42
A 2o e 3.63
bao ( ne? ) / (47‘1’607’]’17&)% (3.63)

Because these cut-offs are in In term result is not sensitive to their exact values.

One commonly uses Collision Frequency. Energy Loss Collision Frequency is

1 dK T m
Vg = @IE E — Tzt m_?iﬂj)? SngO In |A| (364)
1 2
Substitute for bgg and m,. (in bgg)
2
mym G
Vg — Thsty e 3 dre 711172?12 @2] InA (365)
(ml + m?) Omitma ¥l
2 2
8
= oy ATy (3.66)
(4dmeq)” Mammavy
Collision time T = 1/vg
Effective (Energy Loss) Cross-section {%% = O'Kng}
2 2
4143 s
= = In A 3.67
Tk = Vi /Moty (dme)? mama? n (3.67)
3.3.3 Momentum Loss
Loss of x-momentum in 1 collision is
Ap, = my(v —v},) (3.68)
m m
= myty {1 — (ml +1m2 + - +2m2 COos Xc)} (3.69)
Mg
= D m (1 — CO8 XC) (370)
2 2b2
~op, 2 Xe ., T2 2% (3.71)

mq + ms 2 mi + ms b2

(small angle approx). Hence rate of momentum loss can be obtained using an integral
identical to the energy loss but with the above parameters:

dp bz m2 203,
— = 2mwbdb 3.72
ac — " /bm ml+mg B2 " (8:72)
Mo 9
= nap —— dw bz, InA 3.73
b M1 + ma 20 ( )

Note for the future reference:
@ dp 5 TN1tho

— = = ———" = AxbZ, InA. 3.74
ar Car T " o g e (3.74)
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Therefore Momentum Loss.

Collision Frequency

1ldp Mo
Vp = ?}15@ = sty m 47['530 1HA (375)
2
Mg q142
= InA 3.76
ehe my + mo {47%07;’1?”52@%] " (3.76)
2 2
4
_ gy % AT _ 2”2) In A (3.77)
(4men) MaIMivy
Collision Time T, = 1/1
Cross-Section (effective) o =V, /naty
Notice ratio
Energy Loss vk 2 mp+ma 2y (3.78)
Momentum loss v, C myme Mams g+ e )
This is
< 1 if my €< ms. (3.81)

Third case, e.g. electrons — shows that mostly the angle of velocity scatters. Therefore
Momentum ‘Scattering’ time is often called ‘90° scattering’ time to ‘diffuse’ through 90° in
angle.

3.3.4 ‘Random Walk’ in angle

When m; << mg energy loss << momentum loss. Hence |v} ~ v;. All that matters is the
scattering angle: xr =~ e =~ 2bgo/b.

Mean angle of deviation in length L is zero because all directions are equally likely.
But:
Mean square angle is

bmax

Aa? = ngLf x* 2mbdb (3.82)
bm‘m

— Lny 87 b%, InA (3.83)

Spread is ‘all round’” when Aa? ~ 1. This is roughly when a particle has scattered 90° on

average. It requires
Lng 8mbs, InA=1 . (3.84)

a0



So can think of a kind of ‘cross-section’ for ‘oep’ 90° scattering as such that
nolicey’ = 1 when Lny 87 b3 InA=1 (3.85)
ie ‘0gy’ = 8mby, InA (= 20,) (3.86)

This is 8In A larger than cross-section for 90° scattering in single collision.

Be Carefull ‘oqy’ is not a usual type of cross-section because the whole process is really
diffusive in angle.

Actually all collision processes due to coulomb force are best treated {in a Mathematical
way) as a diffusion in velocity space

— Fokker-Planck equation.

3.3.5 Summary of different types of collision

The Energy Loss collision frequency is to do with slowing down to rest and exchanging
energy. It is required for calculating
Equilibration Times (of Temperatures)
Energy Transfer between species.
The Momentum Loss frequency is to do with loss of directed velocity. It is required for
calculating
Mobility: Conductivity /Resistivity
Viscosity
Particle Diffusion
Energy (Thermal) Diffusion
Usually we distinguish between electrons and ions because of their very different mass:

Energy Loss [Stationary Targets] Momentum Loss
EYee = ne(ZlTe:)fQ 75;:)3 InA Phee =5 gy X {% = 1}
0 eve e
Ky, = ni(f—ze‘% ﬁ—g In A v =5 v {m;—f— UL 27’71@ }
MEg)™ MeTNilg e Te
Fuy = ni(ijji) ﬂi; InA Py =5y % F% - 1} (3.87)
Ko = nﬁﬂ—ln/\ Py, :Ky'x{wwl}
* “(dmeg)” mMumev? * " 2mi; 2

Sometimes one distinguishes between ‘transverse diffusion’ of velocity and ‘momentum loss’,
The ratio of these two is

Apt /| Apy| dn 1dp (3.59)
AL/ |pAL P drL )
_ (ml+m2 ) __2ma (3.89)
mf’:’j’nz% m1+m2
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So

¢ 2
‘090, = 2 =1 like particles (3.90)
Ty mq + Mo
2
2 <<my (3.92)
my
Hence
e = Pl = Free (= vt (3.93)
Ly = Py = K22 (= Zu,) (= v (3.94)
g
J_n’/m' = p?/ﬂ' = KI/M' (: I/%”) (lee IOHS) (395)
2 e [
Ty = ™~ Plie = e Frvie = Fug = vy (3.96)
s s

[But note: ions are slowed down by electrons long before being angle scattered.|

3.4 Thermal Distribution Collisions

So far we have calculated collision frequencies with stationary targets and single-velocity
projectiles but generally we shall care about thermal (Maxwellian) distributions (or nearly
thermal) of both species. This is harder to calculate and we shall resort to some heuristic
calculations.

341 e—1

Very rare for thermal ion velocity to be ~ electron. So ignore ion motion.
Average over electron distribution.
Momentum loss to ions from {assumed) drifting Maxwellian electron distribution:

felv) =n. ( e )2 exp {m(v—vd)z

— 3.97
2nT, 2T ( )

Bach electron in this distribution is losing momentum to the ions at a rate given by the
collision frequency

aoq; 4w (me +mi)
“4mep)®  mymZu®

In A (3.98)

p f—
so total rate of loss of momentum is given by (per unit volume)

— Ccii_i) :/fe(v) vp(v) mev v (3.99)

To evaluate this integral approximately we adopt the following simplifications.
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1. Ignore variations of In A with » and just replace a typical thermal value in A =

Ap/bgo(’vl).

2. Suppose that drift velocity v, is small relative to the typical thermal velocity, written

Ve = +/te/me and express f, in terms of u = — to first order in uy
e

fe:ne

2

1

e

(27)% v}

taking x-axis along uy and denoting by f, the unshifted Maxwellian.

(27)¢

3
Ve

(1 +uuy) exp

exp {

2

Then momentum loss rate per unit volume

Cdpe
a

v
= wpleme [( 4wy 25 v, & v

To evaluate this integral, use the spherical symmetry of f, to see that:
1l +up s 1 7wl

= [T T e :ffg,ﬂg
3 / u3 Jod'v 3 ugf M
1 e,

= 7/' £ fAmidy
3Jo w

2 o
= —que f fo2udu
3 0

2
/Egm%
u

1

(u - ugy’]

/ Felpmety dv

2
; } = (1 + utig) fo

3

u2 5
= Vp(”t)mewdfﬁ fod v

2

f— 71"‘8

3

2

T

e

3

(2m) % g

fon

2

3 (Qﬂ—)%

Thus the Maxwell-averaged momentum-loss frequency is
Ldp _

Veg =

pdt:y

2

3(2m)7

(where p = m.vsn,. is the momentum per unit volume attributable to drift).

Gq;

2

T Tte
3(2m)®

Vp(vt)

Am (me + my)

3(27)*
2

3(27)7

g
(4men)”

i

!

2182

4eq

)2

My

4
T3
médé

In A,

In A,

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(substituting for thermal electron velocity, v., and dropping m—: order term), where Ze = g;.

This is the standard form of electron cellision frequency.
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342 i—e

Ion momentum loss to electrons can be treated by a simple Galilean transformation of the
e — 1 case because it is still the electron thermal motions that matter.

[ons —  Hlectrons [ons «—— Electrons
L .. ) . " % * e .0 ’ i ./' r
--. &9 Jﬁ.r;' - .o. B S “'

° o \J: .y %. _.

Us 0 =1 Vg = —V;

Figure 3.6: Ion-electron collisions are equivalent to electron-ion collisions in a moving refer-
ence frame.

Rate of momentum transfer, ‘j{f, is same in both cases:

dp
— == 3.107
7 = (3.107)
Hence p.ve; = piVse O
Tip = g, = 2 5, (3.108)
Bi g

(since drift velocities are the same).

Ion momentum loss to electrons is much lower collision frequency than ¢ — i because ions
possess so much more momentum for the same velocity.

343 1—1

Ion-ion collisions can be treated somewhat like ¢ — 2 collisions except that we have to
account for moving targets i.e. their thermal motion.

Consider two different ion species moving relative to each other with drift velocity vy; the
targets’ thermal motion affects the momentum transfer cross-section.

Using our previous expression for momentum transfer, we can write the average rate of
transfer per unit volume as: [see 3.74 “note for future reference”]

// ol vedm b2y In A fy fodPuidPus (3.100)

my + Mg

where v, is the relative velocity (vi — v3) and by is expressed

boo = (3.110)



hiMmse
my+mae’

Since everything in the integral apart from f; f; depends only on the relative velocity, we
proceed by transforming the velocity coordinates from vy, vy to being expressed in terms of
relative (v,) and average (V say)

and m, is the reduced mass

M1Vy + MaVg

P = V] — ; V= 3.111
=i mi + ma ( )
Take fi and f5 to be shifted Maxwellians in the overall C of M frame:
my o\ m; (v — vg)
) (Vi — Vg ‘
fr=ns () e [— Yl | o) (3112
where mvg + mavge = 0. Then
my N/ mg N3 mivs  mavl
o 1 2 N 1Yy N 2Yg
iz = s (%T) (%T) P { o7 2T
V1.1V V2.1 Vao
1 3.113
P { + T T } ( )
to first order in v, Convert CM coordinates and find (after algebra)
fif — M3 My : MV? mw?
A (w) (%T) SPTTor T or
mT‘
X {1 + ?Vd.vr} (3.114)

where M = my + mgy. Note also that (it can be shown) d®vd®vy = d®v,d°V. Hence

3 E]
dp M 2 My V2
- :/f VI Uy 47 bgo In Anyng (Q7TT> (27TT>

2 2
exp ( ﬂg;f ) exp (TZT;T) {1 + T;de-Vr} o, d*V - (3.115)

and since nothing except the exponential depends on V', that integral can be done:

dp m, N\ —m,u? My
= fVT mevdm In A nqng (271'T> exp ( o ) {1 + Tvd.vrr} v, (3.116)

This integral is of just the same type as for e — ¢ collisions, i.e.

dp 2 u% 5 3
— — = UgU, 4T b5(v) In Ay nan/—fo(w)d v,
dt Us
2
= VUM A T bag(ve) In Ay nyng = (3.117)
3(2m)=

5o



where v, = | !m%, bZ,(v,:) is the ninety degree impact parameter evaluated at velocity vy,

and fo is the normalized Maxwellian.

d 2 2y
_dp _ <9192> T 10 A, g mevg (3.118)

1
d7eg

dt  3(2m)> ;

mg?_}m
This is the general result for momentum exchange rate between two Maxwellians drifting at
small relative velocity vy,

To get a collision frequency is a matter of deciding which species is stationary and so what the
momentum density of the moving species is. Suppose we regard 2 as targets then momentum
density is nymyvy so

1 d 2 2 4w InA
_ P )1@((11(12) ToInAy (3.119)

mmivgdt 3 (o7 dmeq) mpvd My

This expression works immediately for electron-ion collisions substituting m, ~ m,, recov-
ering previous.

: mi 1 T aT

% = . —_ —_

For equal-mass ions m, = o 3l and v, — 4/ - =
Substituting, we get

_ qiga\? 4w
P In A 3.120
v s " (47TEO> Lz ( )

that is, % times the e — % expression but with ion parameters substituted. Note, however,
that we have considered the ion species to be different.]

344 e¢—e¢

Electron-electron collisions are covered by the same formalism, so
1 23?4
Voo = = n (€> T A (3.121)
372 4meq mEETEE

However, the physical case under discussion is not so obvious; since electrons are indistigu-
ishable how do we define two different “drifting maxwellian” electron populations? A more
specific discussion would be needed to make this rigorous.

Generally v, ~ Vei/ﬂ . electron-electron collision frequency ~ electron-ion (for momentum
loss).

3.4.5 Summary of Thermal Collision Frequencies

For momentum loss:

Vs InA. . (3.122)



1

Vee = —= Ve; . slectron paramsters 3.123
57 (ekction porameters (3.123)
neme —
Vie = Ve (3124)
Ty
2 g\ A i :
T = ini,<qq'> 1”3< My )2111/\@- (3.125)
3ﬁ 477'60 m?T-E My + My,
Energy loss % v related to the above (Pv) by
2my
Ky T gy, (3.126)
My + Mg

Transverse ‘diffusion’ of momentum +v, related to the above by:

9
=2 p, (3.127)
my + Mg

3.5 Applications of Collision Analysis

3.5.1 Energetic (‘Runaway’) Electrons

Consider an energetic (%mewf >> T') electron travelling through a plasma. It is slowed down
(loses momentum) by collisions with electrons and ions (Z), with collision frequency:

4
3
Plee = Vee :ne% % InA (3.128)
(dmeg)” mZvy

1
Pl B 7 Ve (3.120)

Hence {in the absence of other forces)

d
g(mev) = — ("Wee + Puvg) myv (3.130)
Z

- — (1 + 5) Ve T {3.131)

This is equivalent to saying that the electron experiences an effective ‘Frictional’ force

d A
Fy = a(mev) = — (1 + E) Vee MV (3.132)
Z e 871 InA
Fr = — (1 i ) Mg 3.133
f 2 (47TEO)2 me,UQ ( )

ar



Notice

1. for Z =1 slowing down is % on electrons % ions

2. Iy decreases with » increasing.

Suppose now there is an electric field, K. The electron experiences an accelerating Force.
Total force

d

F=_
dt

A et Stin A
)ne : (3.134)

(mv) = —eE+ Fp = —eE — <1+—

2 47TE()) 2 mevg

Two Cases (When FE is accelerating)

1. |eE| < |F¢|: Electron Slows Down

2. |eE| > | Ff|: Electron Speeds Up!

Once the electron energy exceeds a certain value its velocity increases continuously and the
friction force becomes less and less effective. The electron is then said to ahve become a
‘runaway .

Condition:

A et Stin A
) o (3.135)

1 2
—1Me - 1 _
g ( T3) " lre)? 2eE

3.5.2 Plasma Resistivity (DC)

Consider a bulk distribution of electrons in an electric field. They tend to be accelerated by
B and decelerated by collisions.

In this case, considering the electrons as a whole, no loss of total electron momentum by
e — e collisions. Hence the friction force we need is just that due to v,;.

If the electrons have a mean drift velocity v,(<< vye) then

d
g(mefud) = el — Tm.uy (3.136)
Hence in steady state
—el
Uy = —— {3.137)
Meleg
The current is then
, nee’E
J = TRl = - (3.138)
Melieg

Now generally, for a conducting medium we define the conductivity, o, or resistivity, n, by

j=cE ; nj=FE (01) (3.139)



Therefore, for a plasma,

1 2
o= = (3.140)
) Melei
Substitute the value of 7,.; and we get
1
A e’mé 87 InA
n o~ : : . (3.141)
Te  (4mep)” 321 T2
1
Ze?mé 8t InA
= cme on (for a single ion species). (3.142)

3
(4mep)” 3v2m T

Naoatice

1. Density cancels out because more electrons means (a) more carriers but (b) more
collisions.

2. Main dependence is 1 o< Tge’/?. High electron temperature implies low resistivity (high
conductivity).

3. This expression is only approximate because the current tends to be carried by the
more energetic electrons, which have smaller v.;; thus if we had done a proper average
over f(v.) we expect a lower numerical value. Detailed calculations give

n =152 x% oA o (3.143)

(T./eV)?
for Z =1 (vs. =~ 107 in our expression). This is ‘Spitzer’ resistivity. The detailed
calculation value is roughly a factor of two smaller than our calculation, which is not
a negligible correction!

3.5.3 Diffusion

For motion parallel to a magnetic field if we take a typical electron, with velocity v =~ v, it
will travel a distance approximately

Co = Vs /Ui (3.144)

before being pitch-angle scattered enough to have its velocity randomised. [This is an order-
of-magnitude calculation so we ignore .| £ is the mean free path.

Roughly speaking, any electron does a random walk along the field with step size £ and step
frequency 7.;. Thus the diffusion coefficient of this process is

2
Dy~ (2T ~ e (3.145)

Similarly for ions
2

Dy o g o 8 (3.146)

i1
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Notice
Me\ 2 -
Vii[Vei = (e> ~— (it T, = T) (3.147)
g
Hence le ™~
Mean free paths for electrons and ions are ~ same.

The diffusion coefficients are in the ratio

(1

D
HZ ~ (ﬂ%) . lons diffuse slower in parallel direction. (3.148)
€ m;

Diffusion Perpendicular to Mag. [ield is different

L L ©

Figure 3.7: Cross-field diffusion by collisions causing a jump in the gyrocenter (GC) position.

Roughly speaking, if electron direction is changed by ~ 90° the Guiding Centre moves by
a distance ~ rp. Hence we may think of this as a random walk with step size ~ r; and

frequency 7.;. Hence

2
Ute —

€

De| ~ 7% Doy = (3.149)

Ion transport is similar but requires a discussion of the effects of like and unlike collisions.

Particle transport occurs only via unlike collisions. To show this we consider in more detail
the change in guiding center position at a collision. Recall mv = gv A B which leads to

v, = gI'L A B {perp. velocity only). {3.150)
m
This gives
B Amv)

At a collision the particle position does not change (instantaneously) but the guiding center
position (rg) does.

r,+r; =ro+r; = Arg=r) —1r5 = —(rp — 1) {(3.152)
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Change in rg is due to the momentum change caused by the collision:
rp 1= Amv —v)= - AA(mv) (3.153)

So
Arg = —— A A{mv). (3.154)

The total momentum conservation means that A(mv) for the two particles colliding is equal
and opposite. Hence, from our equation, for like particles, Ary is equal and opposite. The
mean position of guiding centers of two colliding like particles (rg; + roz) /2 does not change.

No net cross field particle {(guiding center) shift.

Unlike collisions (between particles of different charge q) do produce net transport of particles
of either type. And indeed may move rg; and rge in same direction if they have opposite
charge.

2
Ve
2 i
1
Notice that 77, /r7, ~ ms/me P /Te; =~ B2

So Dy /Dy =~ 1 (for equal temperatures). Collisional diffusion rates of particles are same
for ions and electrons.

However energy transport is different because it can occur by like-like collisins.
Thermal Diffusivity:

Xe ™~ Tl (Veit Vee) ~ 78 Vei (Vei ~ Vee) (3.156)
Xi ~ Th (Ve + ) =7 Vi (T > Vi) (3.157)

1
2 = 2 1
L Vi Mg m m;
XifXe ~ 2=t = ()2 (equal T) (3.158)
TTe Vei Me mf Me

Collisional Thermal transport by lons is greater than by electrons [factor ~ (m;/m,)7 |.

3.5.4 Energy Equilibration

If T, # T; then there is an exchange of enegy between electrons and ions tending to make
T, =1T;. As we saw earlier

2 [ [
Ky = & Pre = o Ly (3.159)
T T
So applving this to averages.
2m
Ky, ~ "7 ~ Ve 3.160
- (= 7 (3.160)
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Thermal energy exchange occurs ~ m,/m; slower than momentum exchange. (Allows 7T, #
T:). So

drT, dT; —
¢t Ky (T.-T, 3.161
o % Vei { ) (3.161)
From this one can obtain the heat exchange rate (per unit volume), H,;, say:
d /3 d /3
Hy = ——(onTe) =— (-nd; 3.162
dt (2” ) dt (2” ) (3.162)
3 d 3 —
= x0T TN ="Ky (T T 3.163
4ndt( e 1) Qn Vez( e ’L) ( )
Important point:
T,N%Z N1<Mre>5.. 3.164
Vei ™ DVee ™ p\ ) Vi (3.164)

‘Electrons and Ions equilibrate among themselves much faster than with each other’.

3.6 Some Orders of Magnitude

1. In A is very slowly varying. Typically has value ~ 12 to 16 for laboratory plasmas.

9. Ty 0 6 x 107N (ng/m?) / (Tu/eV): (InA=15,7=1).
e.g. =2 x 10°%7 1 (when n = 10°m=3 and T, = 1keV.) For phenomena which happen
much faster than this, i.e. 7 € 1/v,; ~ bus, collisions can be ignored.
Examples: Electromagnetic Waves with high frequency.

3. Resistivity. Because most of the energy of a current carrying plasma is in the B field
not the K.E. of electrons. Resistive decay of current can be much slower than 7.;. E.g.
Coaxial Plasma: (Unit length)

Inductance L = p, ln%
Resistance R =rn 1/ma”
L/R decay time

poma® b n.e’ 5, b
TR o~ In — ~ — o ma” In —
n a MV a
2 2 22
n.et a1 wia 1 1
~ = —2 - — p2 M > - - (3165)
Metp C° Ve c Vei Vei

Comparison 1 keV temperature plasma has ~ same {conductivity/) resistivity as a slab
of copper (~ 2 x 107%Qm).

Ohmic Heating Because 1 o Te_g/z, if we try to heat a plasma Ohmically, i.e. by simply

passing a current through it, this works well at low temperatures but its effectiveness falls
off rapidly at high temperature.
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Result for most Fusion schemes it looks as if Ohmic heating does not quite yet get us to the
required ignition temperature. We need auxilliary heating, e.g. Neutral Beams. (These slow
down by collisions.)
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