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Solar Hot Water Heating System
• Requirement:  100 gpd @ 150°F

Th = 150 F

Tc= 40F
pump

Hot
water

storage
tank

Auxiliary heatingSolar
flux, q

BTU required/day = 100 (gpd) x 8.33 (lb/gal) x 1 (BTU/lb-°F) x (150-40)(°F)

  = ~ 90,000 BTU/day
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Solar Hot Water Heating System (contd.)

• Assume:  We use the solar heater to provide 50% of annual heat load
(with the remainder being supplied by auxiliary heater).

• So, if the collector efficiency is 50%, we need:
– 90 sq. ft. of collector area in Boston
– 45 sq. ft. of collector area in Tucson
and the collectors will deliver 45,000 BTU/day, on average.

Solar BTU delivered per

sq. ft. per day

January June Average

Boston,MA 500 2000 1000

Tucson, AZ 1000 2500 2000
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Thermal
energy

Time, t
(yrs)

0 1t1 t2

Design heat
load

requirement

Solar flux, q(t) x
collector area x 0.5

90,000 BTU/day

General problem:  Choose collector area such that
capital cost of collector + cost of auxiliary energy
is minimized.
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System Cost Boston
@ 90 sq. ft

Tucson
@ 45 sq ft

Panels ($17/sq.ft) 1530 765
Piping 500 500
Pump & controls 100 100
Installation 500 500
Total $2630 $1865

Note:  We don’t include the cost of the hot water storage tank,
since the gas heater also requires such a tank.
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Economic Comparison

Solar hot water Gas heater

time

time
$2630 (Boston)

• A simplistic comparison:  Assume equipment lifetime of 10 years.
Hence, “annual cost” = $263.  Avoided cost of natural gas = 45,000
BTU/day x 10-6 (MCF/BTU) x 14 ($/MCF) x 365 days/yr  x (1/0.8)  =
$287/yr

• But this calculation understates the true cost of the solar investment

• Suppose the homeowner borrows the funds for the solar heating system.

• Assume the loan is for 10 years, at 10%/yr interest rate, and that the
bank requires 10 equal annual payments.

• If the homeowner simply paid the bank  $263/yr for 10 years, the
bank wouldn’t be happy!
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Economic comparison (contd.)

P

A

• What is the value of A, the uniform annual
payment, such that the loan P (at interest rate r)
will be fully repaid after 10 years, with interest?
(Assume payments are made at the end of each
year.)
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After the end of the first year, the homeowner pays interest at rate r on the

principal, rP, and retires a portion of the principal, D1, where

A = Pr + D1                          (1)

After the end of the second year, the homeowner pays interest on the

residual principal of (P-D1) and retires a further portion of the principal, D2, where

A = (P-D1)r + D2                      (2)

And substituting for D1 in (2) and solving for D2 we have:

D2 = (A – Pr)(1+r)                   (3)

After the end of the third year, the homeowner pays interest on the

residual principal, P – D1 – D2, and retires a further portion of the principal D3,

where

A = (P-D1-D2)r + D3 (4)

And substituting for D1 and D2 in (4) and solving for D3, we have:

D3 = (A – Pr) (1+r)2 (5)

And, by induction,

Dn = (A – Pr) (1 + r)n-1 (6)
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And since

  
Dn

n=1

N

Â = P

we can write

  

† 

P = (A - Pr)(1+ (1+ r) + (1+ r)2 + ... + (1+ r)N-1 )

= (A - Pr)
(1- (1+ r)N

-r

È 

Î 
Í 

˘ 

˚ 
˙ 

andsolvingfor A,we have

    

 A =  P  
r 1+ r( )N

1+ r( )N

- 1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

(1)
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Loan payment schedule
 Constant annual payments

Loan duration:  10 yrs
Interest rate: 10%/yr
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 A =  P  
r 1+ r( )N

1+ r( )N

-1
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What is the price of natural gas above which the
solar heating system will be economic?

We solve for p* in:

where:
Io = investment cost of solar hot water heating system
P*= breakeven price of natural gas ($/thousand cu. ft., ($/MCF))
Q = annual gas requirement (in MCF)
    = 45,000 (BTU/day) x 365 (day/yr) x 10-6 (MCF/BTU) x 1/0.8
    = 20.5 MCF/yr
(where we have again assumed an 80% efficiency for the gas heater)

    

A =  I
o
 

r 1+ r( )N

1+ r( )N

-1

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ = p * Q
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Minimum delivered price of natural gas above which residential solar hot water heating is

economical ($/MCF)

10-yr loan w/ uniform

annual payments

Threshold price of gas, p* ($/MCF)

@ interest rate r  (%/yr) Boston

(Io = $2630)

Tucson

(Io = $1865)

3 15 10.5

6 17.4 12.5

10 20.9 14.8

Note:

Average price of residential natural gas in Massachusetts during 2002 = ~$15/MCF

Average price of residential natural gas in Arizona during 2002     = $12.36/MCF

(Source:  DOE Energy Information Administration web site)
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Time Value Equivalence Factors
(Discrete compounding, discrete payments)

Factor Name Factor Notation Formula Cash Flow Diagram

Future worth factor
(compound
amount factor)

(F/P, i, N) F=P(1+i)N

Present worth
factor

(P/F, i, N) P=F(1+i)-N

Uniform series
compound amount
factor (aka future-
worth-of-an-
annuity factor)

(F/A, i, N)

  
F = A

(1+ i)N - 1
i

È 

Î Í 
˘ 

˚ ˙ 

Sinking fund factor (A/F, i, N)

  
A = F

i

(1+ i)N - 1

È 

Î Í 
˘ 

˚ ˙ 

                               F

 _______________

  A   A   A   A   A   A

Present worth of
an annuity factor

(P/A, i, N)

  
P = A

(1 + i)N - 1
i(1+ i)N

È 

Î Í 
˘ 

˚ ˙ 

Capital recovery
factor

(A/P, i, N)

  
A = P

i(1+ i)N

(1+ i)N -1

È 

Î Í 
˘ 

˚ ˙ 

     A    A    A    A    A

P

F

P
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Frequency of compounding
• Compounding of interest occurs over different intervals -- annually, quarterly,

monthly, daily, etc.
• Example:  A loan offered at “an annual interest rate of 12%, compounded

quarterly”:
– Interest rate per quarter = 12/4 = 3%
– Effective annual interest rate = (1+0.03)4 - 1 = 1.1255-1 = 0.1255 (i.e.,

12.55%)
• Differentiate between nominal and effective interest rates:

– If i is the interest rate per period, and m is the number of compounding
periods per year:

• Effective annual interest rate, ia = (1+i)m - 1
• Nominal interest rate, r = i.m
• And, ia = (1 + r/m)m - 1
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Effective interest rates, ia, for various nominal rates,
r, and compounding frequencies,m

Effective rate ia for nominal rate ofCompounding
frequency

Compounding
periods per
year,m 6% 8% 10% 12% 15% 24%

Annually 1 6.00 8.00 10.00 12.00 15.00 24.00

Semiannually 2 6.09 8.16 10.25 12.36 15.56 25.44

Quarterly 4 6.14 8.24 10.38 12.55 15.87 26.25

Bimonthly 6 6.15 8.27 10.43 12.62 15.97 26.53

Monthly 12 6.17 8.30 10.47 12.68 16.08 26.82

Daily 365 6.18 8.33 10.52 12.75 16.18 27.11

Continuous ∞ 6.18 8.33 10.52 12.75 16.18 27.12



9

2/9/04 Nuclear Energy Economics and
Policy Analysis

17

Example -- Valuation of Bonds

• Bonds are sold by organizations to raise money
• The bond represents a debt that the organization owes to

the bondholder (not a share of ownership)
• Bonds typically bear interest semi-annually or quarterly,

and are redeemable for a specified maturity value  (also
known as the face value) at a given maturity date.

• Interest is paid in the form of regular ‘premiums’.  The
flow of premiums constitutes an annuity, A, where

A  = (face value) x (bond rate)
• The value of a bond at a given point in time is equal to the

present worth of the remaining premium payments plus the
present worth of the redemption payment (i.e., the face
value)
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Example -- Valuation of Bonds (contd.)
• Consider a 10-year U.S. treasury bond with a face value of

$5000 and a bond rate of 8 percent, payable quarterly:
– Premium payments of $5000 x (0.08/4) = $100 occur four times

per year 5000

100

0
10

P

Present worth at time zero

  P = A ¥ (P/A,r/4,40) + F(P/F,r/4,40)

where A = 100, F = 5000, and r = 8%

and using our formulae, we have

    

P = A
(1+ i)N -1

i (1+ i )N

È 

Î Í 
˘ 

˚ ˙ + F
1

(1+i)N

È 

Î Í 
˘ 

˚ ˙ 

andsince

A = Fi

P = F
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Continuous compounding
• For the case of m compounding periods per year and nominal annual

interest rate, r, the effective annual interest rate ia  is given by:
       ia = (1 + r/m)m - 1

• In the limiting case of continuous compounding

    

† 

ia =mÆ•
lim (1+

r
m

)m -1

Writing

i = r
m

ia =iÆ0
lim (1+ i)

r

i -1

= er -1

or

r = ln(1+ ia )
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Effective interest rates, ia, for various nominal rates,
r, and compounding frequencies, m

Effective rate ia for nominal rate ofCompounding
frequency

Compounding
periods per
year,m 6% 8% 10% 12% 15% 24%

Annually 1 6.00 8.00 10.00 12.00 15.00 24.00

Semiannually 2 6.09 8.16 10.25 12.36 15.56 25.44

Quarterly 4 6.14 8.24 10.38 12.55 15.87 26.25

Bimonthly 6 6.15 8.27 10.43 12.62 15.97 26.53

Monthly 12 6.17 8.30 10.47 12.68 16.08 26.82

Daily 365 6.18 8.33 10.52 12.75 16.18 27.11

Continuous ∞ 6.18 8.33 10.52 12.75 16.18 27.12
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Continuous Compounding, Discrete Cash Flows
(nominal annual interest rate r, continuously compounded, N periods)

To Find Given Factor Name Factor Symbol Factor formula

F P Future Worth Factor* (F/P, r%, N) F = P(erN)

P F Present Worth Factor (P/F, r%, N) P = F(e- rN)

F A Future Worth of an
annuity factor

(F/A, r%, N)
F = A erN - 1

er -1
Ê 
Ë 
Á ˆ 

¯ 

A F Sinking Fund Factor (A/F, r%, N)
A = P er - 1

erN - 1
Ê 
Ë 
Á ˆ 

¯ 

P A Present Worth of an
annuity Factor

(P/A, r%, N)
P = A erN - 1

erN(er -1)
È 

Î Í 
˘ 

˚ ˙ 

A P Capital Recovery Factor (A/P, r%, N)
A = P erN(er -1)

erN - 1
È 

Î Í 
˘ 

˚ ˙ 
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Example:
You need $25,000 immediately in order to make a
down payment on a new home.  Suppose that you
can borrow the money from your insurance
company.  You will be required to repay the loan in
equal payments, made every 6 months over the next
8 years.  The nominal interest rate being charged is
7% compounded continuously.  What is the amount
of each payment?
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Example -- payment and compounding periods don’t coincide
Find the present worth of a series of quarterly payments of
$1000 extending over 5 years, if the nominal interest rate is
8%, compounded monthly.
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Continuous cash flows, continuous compounding
In many applications, cash flows are also essentially continuous (or it is convenient to
treat them as such).  We need to develop time value factors equivalent to those we have
obtained for discrete cash flows.

Let X = continuous rate of flow of cash over a period (in units of , e.g., $/yr)

Assume also: continuous compounding at a nominal rate of r%/yr.

First, derive a future (end of year) worth X  equivalent to 1 year of continuous cash flow X 
($/yr).

To do this, represent X as a uniform series of m discrete cash flows of magnitude X /m in
the limit as m --> ∞

    

FW = lim

mÆ•

X

m
¥ (F/A, i%,  m)  where   i =

r

m

 X   =  lim

mÆ •

X
m

(1+ i)m - 1
i

È 

Î Í 
˘ 

˚ ˙ 
= lim

iÆ0
X (1+ i)

r
i -1

r

È 

Î 
Í 

˘ 

˚ 
˙ 

= X er -1
r

È 

Î Í 
˘ 

˚ ˙ 
  =  X ia

ln(1+ ia)

        

      

        

  

X 

m

X 

m

X 

m

X 

m

X 

m
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Example of continuous cash flows & continuous compounding
An oil refinery is considering an investment in upgrading a main
pump.  The upgrading is expected to result in a reduction in
maintenance labor and materials costs of about $3000 per year.

If the expected lifetime of the pump is three years, what is the
largest investment in the project that would be justified by the
expected savings?

(Assume that the required rate of return on investments (before
taxes) is a nominal rate of 20%/ year, continuously
compounded.)
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“Funds flow” time value factors for continuous compounding

0 N

  A 

To Find: Given:

P   A (P/ A , r%, N) Present worth of a continuous
annuity factor

erN - 1
rerN

  A P ( A /P, r%, N) Continuous annuity from a present
amount factor

rerN

erN - 1

F   P (F / P,  r%,  N) Future worth of a continuous
present amount factor

erN(er - 1)
rer

P   F (P / F,  r%,  N) Present worth of a continuous
future amount factor

er - 1
rerN
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Example (from PSB):

A county government is considering building a road from downtown to the airport to relieve
congested traffic on the existing two-lane divided highway.  Before allowing the sale of a bond to
finance the road project, the county court has requested an estimate of future toll revenues over the
bond life.  The toll revenues are directly proportional to the growth of traffic over the years, so the
following growth cash flow function is assumed to be reasonable:

F(t) = 5 (1 – e-0.1t)        (in millions of dollars)

The bond is to be a 25-year instrument, and will pay interest at an annual rate of 6%, continuously
compounded.
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The Method of Laplace Transforms
Note the similarity between the expression for finding the present value of a continuous
cash flow stream, f(t) and the Laplace transform of the function

    

P = f (t)e -rtdt
0

N

Ú

and

      
L f(t){ } = e-st

0

•
Ú f (t )dt

Tables of Laplace transforms for a range of functions are available in many mathematical
handbooks, and the Laplace Transform method can be used as an alternative to the
traditional approach to evaluate equivalence values for continuous cash flows.  For simple
cash flow problems, there is not much computational advantage in using this method, but
for complex cash flow situations the Laplace transform method may offer significant
savings in computation.

For more details of the Laplace transform technique for cash flow modeling, see Park and
Sharp-Bette, Chapter 3.
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Example

Find the present worth of a seasonal cash flow given by:

    f (t) = A sin2 p t

where f(t) is given in $/yr, t is in years, and the cash flow is discounted at an
annual rate r, continuously compounded


