
The Economics of Reprocessing and MOX Recycle

April 5, 2004

4/5/04

Reprocessing

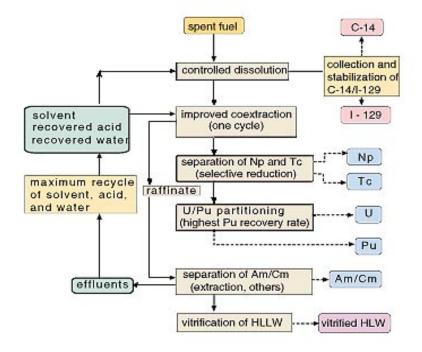
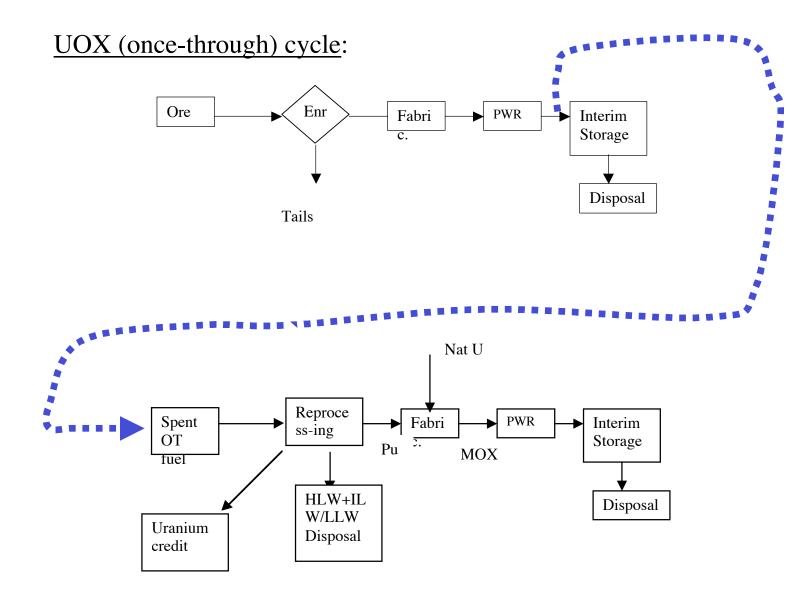


Image removed due to copyright considerations.

Hanford WA - not in use


Image removed due to copyright considerations.

La Hague, France - in use

Estimated Separated Plutonium Holdings

Country	Separated civilian Pu (kg)	Declared military Pu (kg)*
Japan	4,900	0
Germany	6,600	0
Belgium	3,800	0
Switzerland	<50	0
France	29,100	0
United States	4,650	47,500
China	0	0
United Kingdom	69,100	4,400
Russia	32,000	50,000

*Declared to be in excess of national security requirements

Assumptions

1. The contents of the spent fuel discharged from reactors operating on the UOX once-through cycle with a burnup of 50,000 MWDth/MTIHM are as follows:

Uranium: 93.4 w/o (U²³⁵ enrichment: 1.1 w/o) Plutonium: 1.33 w/o (total fissile enrichment (Pu²³⁹+Pu²⁴¹) = 0.93 w/o) Fission products: 5.15 w/o Minor actinides: 0.12 w/o

- 2. Fissile plutonium (Pu²³⁹+Pu²⁴¹) is approximately equivalent to U-235 on a gram for gram basis; that is, equal weight percent enrichments of U-235 and fissile plutonium in U-238 are needed to drive a fuel assembly to the same cycle and discharge burnups. (In practice, MOX fuel has a lower initial reactivity for the same weight percent fissile enrichment, but undergoes a slower loss of reactivity with burnup.)
- 3. Value of uranium recovered from reprocessing spent PWR fuel is zero. (The recovered uranium is still slightly enriched in U-235, but other U isotopes make it less attractive, and under current market conditions, with low natural uranium prices, it is not economic to reuse it.)

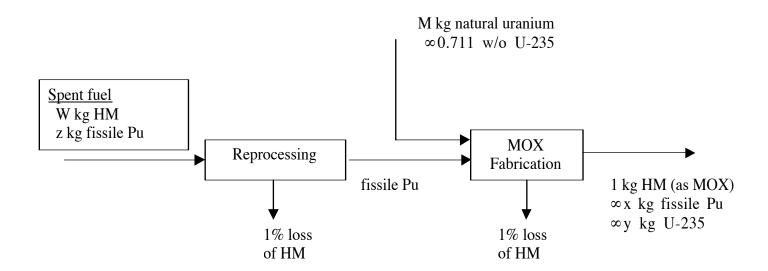
MOX Fuel Cycle Cost Parameters

Transaction	<u>Unit Cost</u>	Lead Time (to start of MOX fuel loading)
Credit for elimination of SF interim storage and disposal cost	\$500/kg HM	2 years
Reprocessing	\$400 - \$1600/kg HM	2 years
Uranium credit	0	
HLW/ILW/LLW storage and final disposal cost	\$200-400/kg HM in SF	1 year
Natural uranium ore purchase and yellowcake conversion	\$40/kg HM	1 year
Blending + MOX fuel fabrication	\$1500/kg HM	1 year
Interim storage of spent MOX fuel	\$100/kg HM	At discharge
Final disposal of spent MOX fuel	\$400/kg HM	At discharge

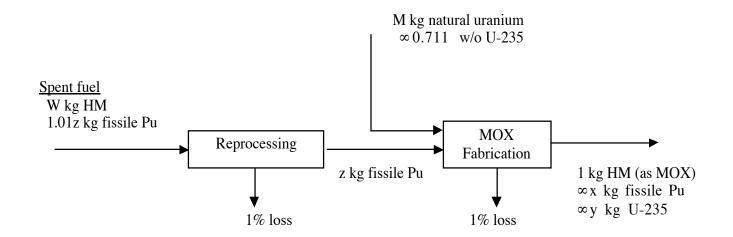
<u>Note</u>: Duration of irradiation = 4.5 years.

22.812 Nuclear Energy Economics
and Policy Analysis

Material balance


Q: How many kilograms of spent PWR fuel must be reprocessed and natural U purchased to □ produce 1 kg of MOX fuel at 4.51% fissile enrichment? □

Let W be the mass of spent fuel (in kg/kg of MOX fuel)


Let M be the mass of natural uranium (in kg/kg of MOX fuel)

Let x be the enrichment of fissile Pu in the MOX fuel \square

Let y be the enrichment of U-235 in the MOX fuel

Material Balance: Front-end of MOX cycle

Calculation of MOX Fuel Cycle Cost Total batch cost $\approx \sum_{i} M_{i}C_{i} + \sum_{i} [M_{i}C_{i}]\phi_{\infty}\Delta T_{i}$

Transaction	Unit Cost, C _i (\$/kg) €	Mass Flow, M _I (kg)	ΔT _I (years)	Direct Cost, M _I C _I (\$/kg)	Carrying Charge, $M_IC_I\phi_{\infty}\Delta T_I$ $(\phi_{\infty} - 0.1/yr)$
SF Storage Disposal Credit	400	4.2	4.25	-2100	-893
Reprocessing	1000	4.2	4.25	4200	1785
HL/IL/LL Waste Disposal	300	4.2	3.25	1260	410
U purchase + conversion	40	0.97	3.25	39	11.7
MOX fab	1500	1.01	3.25	1515	492
Interim storage and disposal of MOX fuel	500	1.0	-2.25	500	-113
TOTAL				5414	1692.7
GRAND TOTAL	-	·		\$7107/kg H	M MOX fuel

i.e., MOX fuel cycle cost ~ 3 x once through cycle cost

Questions

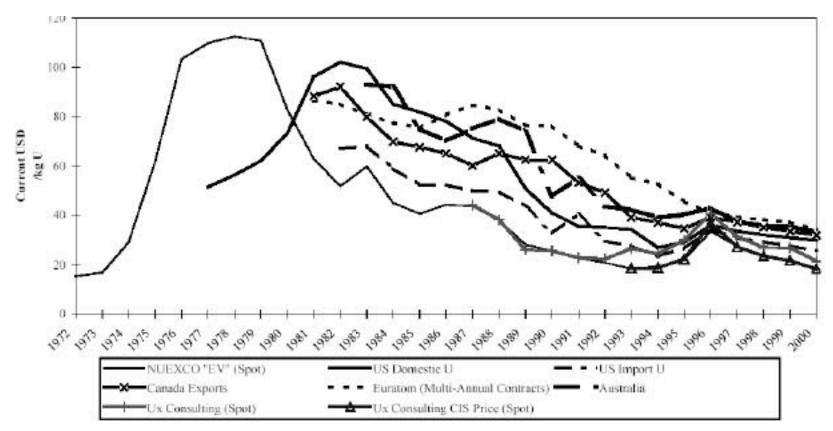
What is the minimum price of natural uranium ore at which MOX recycle would be economic?
2.

3. What is the maximum cost of reprocessing at which MOX recycle would be economic?4.

5. Why are countries such as France and Japan pursuing MOX recycle?

1400 1200
 1000

 Breakeven uranırum price
 \$\mathcal{V}\mathcal{G}\$


 600
 600

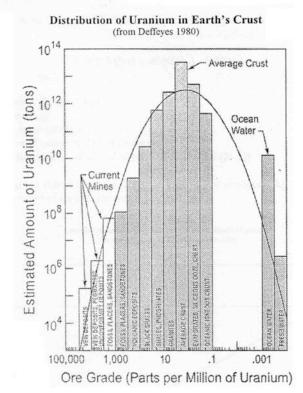
 400
 400
 200 0 500 1000 1500 2000 2500 3000 🗆 0 Reprocessing cost (\$/kg HM)□

Breakeven uranium price as a function of reprocessing cost

22.812 Nuclear Energy Economics and Policy Analysis $14\square$

Natural Uranium Price Trends

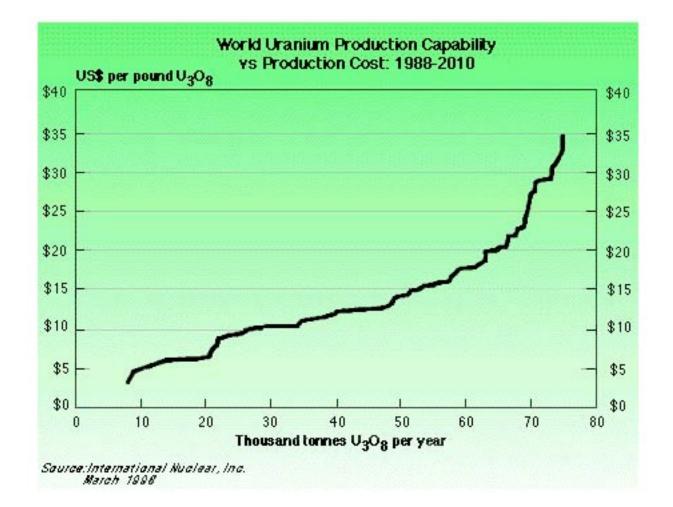
Notes:

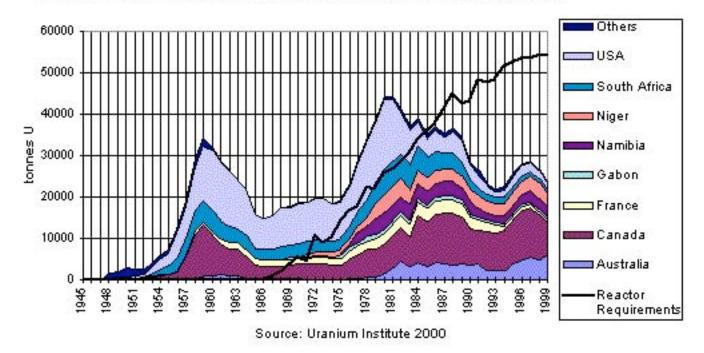

1) NUEXCO Prices refer to the "Exchange Value". The values for 1992-1998 refer to the unrestricted market.

2) Euratom prices refer to deliveries during that year under multiannual contracts.

Sources: Australia, Canada, Euratom, United States, NUEXCO (TradeTech), Nukem, Ux Consulting Company, LLC.

Source: OECD Nuclear Energy Agency and IAEA, *Uranium 2001: Resources, Production and Demand*, 2002, p. 68.





Resources (1000	Number of years of present nuclear electricity production		
Uranium stocks		200	4
HEU and Pu	1	600	12
Known Conventional Resources	< 40 \$ / kgU	> 1254	
	< 80 \$ / kgU	3002	
	< 130 \$ / kgU	3954	80
Undiscovered Conventional	< 80 \$ / kgU	1460	
Resources	< 130 \$ / kgU	5338	and the second second
	Total	11459	230
Uranium in phosphates		22 000	440
Uranium in seawater		4 200 000	80000

Overview of uranium resources (from NEA "Red Book" 1999)

¹ The number of years of present nuclear electricity production (in 2000: 2540.5 TWhe [Nucleonics Week, February 8, 2001]), is calculated using a thermal efficiency of 33%, average load factor of 85%, and a ratio of natural to enriched uranium of 8 kgUnat / kgUenr (3.7%).

Western World Production Against Reactor Requirements 1945-1999