Your Name

\qquad Section \qquad

HOMEWORK \#13 - 8.01 MIT - Prof. Kowalski

Due 4:00PM Thursday Dec. 4, 2003

Topics: Harmonic Oscillators and Relative Motion

Any following problems designated with a bold number indicate problems from Young and Freedman $11^{\text {th }}$ edition.

1. Vibration Isolation System

A heavy table of mass M is vibrationally isolated by being hung from the ceiling by springs so that its period of vertical oscillation is ω_{0} (take ω_{0} to be $2 \pi / \mathrm{sec}$, a typical value). Assume now that the ceiling vibrates vertically with amplitude A at frequency ω, i.e. $y c(t)=A^{*} \cos \left(\omega^{*} t\right)$.

1. Write down the dynamical equation that relates the acceleration of the table $a(t)$ to its position $\mathrm{y}(\mathrm{t})$, and the position of the ceiling. Although M and k will appear in this equation, you should be able to replace them with ω_{0}. Show that the equation you get this way is the same as if a force proportional to $\cos \left(\omega^{*} t\right)$ were acting on the mass - spring system.

This system is referred to as a driven harmonic oscillator. Its steady state solution is $\mathrm{y}(\mathrm{t})=\mathrm{C}(\omega)^{*} \cos \left(\omega^{*} \mathrm{t}\right)$. NOTE that it responds solely at the drive frequency ω, not at the natural frequency of the oscillator ω_{0}. (Actually there is also a transient at ω_{0} that fades away with time in a real system due to damping.)
2. By substituting the above expression for $y(t)$ (and the $a(t)$ that results from this) in your equation from part a, you should be able to obtain and solve a simple equation for $C(\omega)$.
3. With what amplitude, yt, will the table oscillate if the building (i.e. ceiling) oscillates with amplitude 0.01 cm at a (typical) frequency of 15 Hz ? This ratio is called the isolation factor at ω.
2. 13.88
3. 37.1 A double lightening bolt strikes opposite ends of a passenger car that is moving with speed v, lighting up the ends of the car simultaneously from the perspective of a rider in the middle of the car. Which bolt appears to have come earlier to an observer on the ground, or do they appear simultaneous to him?

4. Michelson-Morley Experiment with ether. Michelson, and later Michelson and Morley used a Michelson interferometer mounted on a round granite block that floated on mercury in a surrounding tub. Their experiment is shown above (drawing from http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/mmhist.html). Michelson and most physicists of his generation imagined that light propagates through a transparent nearly massless but quite stiff (so the speed of the light relative to the ether is $\mathrm{c}=3^{*} 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$) medium called the "ether". He thought his experiment would detect the motion of the earth through this ether.
a. If this experiment is moving to the right at speed v , find the time difference for the light to traverse back and forth through the distance L in both the horizontal and vertical direction. Hint: neither time is $2 * L / c$
b. In the Michelson-Morley experiment, the light bounced back and forth several times for a total distance $\mathrm{L}=11 \mathrm{~m}$, and the travel time difference was measured as a shift of the interference pattern (where one fringe was 0.25 um). What was the expected fringe shift when the apparatus was rotated through 90 degrees assuming that v is the velocity of the earth in its orbit? (The observed fringe shift was less than 0.01 of a fringe.)

