
HW Solutions # 10 - 8.01 MIT - Prof. Kowalski

Angular Energy and Angular Momentum.

1) 10.70

Please refer to figure 10.54 p.399.

The general strategy to solve this problem is to figure out the torque
around a point and the direction of the torque will tell you which
way it rotates.

Choose the z direction to be perpendicular to the plane shown in
the figure and pointing up. If the direction of the torque is up it
means that it rotates counterclockwise or it moves to the left. If the
direction of the torque is down it means that it rotates clockwise or
it moves to the right .

The smartest choice of the point you want to write the torque about
is the contact point with the ground because the torque due to
friction and normal force is Zero around this point since they are
acting at this point. Weight vector is also passing through this point
so it doesn’t generate any torque around it.
In the following calculation regard the contact point as origin:

−→r
contact point

= 0

a) F to right; bottom of axle(# 1 ):

−→τc = −→r
Fc

×−→
F ∝ − ẑ

(Where c denotes the contact point; −→τc : torque around the contact
point c; −→r

Fc
: −→r to force from contact point) So it rotates to

the right. Now if you write the torque around center of mass the

only force that has torque around it is
−→
f . Consider z component

of
∑−→τ cm about center of mass. To roll to right, torque must be

in −ẑ, since F gives a +ẑ torque, f (friction) must give −ẑ torque
hence points to left.
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F to right; top of axle(# 2 ):

−→τ c = −→r
Fc

×−→
F ∝ − ẑ

So it rotates to the right. With the same argument friction can
point to the left(if axle radius is small) or to the right (if axle radius
is large).

F points up; left of axle(# 3 ):

−→τ c = −→r
Fc

×−→
F ∝ − ẑ

So it rotates to the right. Friction is the only force acting in hor-
izontal direction and is responsible from Newton’s second law in
horizontal direction for this acceleration so it points to the right.

b) From the definition:

−→τ c = −→r
Fc

×−→
F

There are three ways to make −→τ zero: 1 )r=0; 2 )F=0; 3 )φ=0

(where φ is the angle between the two vectors −→r
Fc

and
−→
F .) Here

you don’t have r=0 or F=0. You can make the angle between them
Zero. This configuration is shown in the figure 2.

c) Please see the right triangle shown in the figure two with the
indicated parameters.

sin α =
r

R
⇒ α = arcsin(

r

R
)

d) Let’s analyze the Newton’s law
−→
F = m−→a here:

∑
Fy = may = 0 ⇒ N −mg −F cos α = 0 ⇒ N = mg −F cos α
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So by increasing f you’ll decrease N. Because fmax = µsN you will
also decrease fmax . Now if you write Newton’s law in the x direction:

∑
Fx = max ⇒ F sin α − f = max

So as you pull harder, F increases and fmax decreases and you’ll
reach a point that f can not cancel completely F sin α and the Yo-
Yo starts to move to the left, but without rotating.

2) 10.78 Ball rolling down track over edge.

The assumption is there is no friction present here so:

Kh + Uh = Eh = E0 = K0 + U0 (1)

There two parts contributing to K: one is the rotation and the center
of mass motion.

K =
1

2
mv2 +

1

2
Iω2

Since the ball rotates without slipping we have w = v
R

so

K =
1

2
m(1 +

I

mR2
)v2 (2)

For a sphere you have

I
ball

=
2

5
mR2

you have:

K =
7

10
mv2

I will measure the gravitation potential energy with respect to the
height of the table so yh = h and y0 = 0.

a) Setting up equation (1) we have:

0 + mgh =
7

10
mv2 + 0
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v =

√
10gh

7

Setting up the familiar kinematic equations for free fall with con-
stant gravity:

y(t) = y0 + v0t − 1

2
gt2

x(t) = v0t

The time T the ball is in the air is (y(T ) = −y):

T =

√
2y

g

x ≡ x(T ) = v0T =

√
20hy
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b) x does not depend on g, so the result should be the same on the
moon.

c) No system is perfect: energy is lost to noise generation, crushing
dirt on the track air resistance, etc.

d) For dollar coin you have:

I
coin

=
1

2
mR2

from equation (2) you have

K
coin

=
3

4
mv2

Repeating the same thing we did for the ball you’ll get:

x
coin

=

√
8hy

3
(slightly less far)
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3) 10.87 Bullet hits pivot rod.
There is no external torque acting on the system of bullet plus rod
if you take torques about the pivot point, so that the forces on the
axle don’t generate any torque:

d
−→
L

P

dt
=

∑−→τ
P

= 0

We conclude that the total angular momentum about P is conserved

a) Angular momentum
−→
L = −→r × −→p is in z direction. Factor out

the ẑ from your equations:

L1 = mv
L

2

L2 = Ĩ
P
ω = [I

P
+ m(

L

2
)2]ω

( Ĩ
P

denotes the total I
P
)

For a rod I around the pivot is

I
P

=
1

3
ML2

where M is the mass of the rod.

mvL

2
=

1

3
ML2ω +

mL2ω

4

So we get

ω =
m
2

M
3

+ m
4

v

L

Here m = M
4

:

ω =
6

19

v

L

b)

K
after

=
1

2
Ĩω2 (3)
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Where Ĩ denotes the total I:

Ĩ =
1

3
ML2 + m(

L

2
)2 = (

4

3
+

1

4
)mL2 =

19

12
mL2 (4)

K
before

=
1

2
mv2 (5)

So the ratio ε is:

ε =
1
2
Ĩω2

1
2
mv2

(6)

combine equations (3), (4), (5) and the boxed result of part a you’ll
get:

ε =
3

19

4) 10.101 Rolling without slipping.

Please refer to figure 3. z is perpendicular to the plane and it’s
pointing up. Without loss of generality assume that the disk is
rotating counterclockwise. From the free body diagram shown in
the figure:

∑
Fy = may = 0 ⇒ N − Mg = 0 ⇒ N = Mg (7)

∑
Fx = Max ⇒ f

k
= Max (8)

f
k

= µkN = µkMg (9)

(where as shown in the figure x is pointing to the left)
Combine (7), (8) and (9):

ax =
f

k

M
=

µkMg

M
⇒ ax=µkg (10)
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This acceleration is constant and from vx(t) = v0 + axt we have

vx(t) = µkgt (11)

The equation for ω can be derived from:

∑
τz = Iαz (12)

Where we write τz around the center of mass. Around this point
the only force that has torque is f

k
:

∑−→τ c = −→r
fc
×−→

f
k

= (−Rŷ) × (−f
k
x̂) = −Rf

k
ẑ

Combine (12) and (13):

αz = −Rf
k

Icm

= −RµkMg

Icm

(13)

αz is constant so:

ωz(t) = ω0 − Rf
k

Icm

t (14)

Let’s denote T as the time that we reach the criteria for no sliding:

vx(T ) = Rωz(T ) (15)

Combine (15) with (11) and (14):

µkgT = R(ω0 − Rf
k

Icm

T )

T (µkg +
R2f

k

Icm

) = Rω0

Replacing f
k

= µkMg and I = 1
2
MR2 you’ll get:

T =
Rω0

3µkg
(16)

The distance it travels during this time can be derived from kine-
matics:

x(T ) = x0 + v0xT +
1

2
axT

2 =
1

2
µkgT 2
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x(T ) =
1

2
µkg(

Rω0

3µkg
)2

x(T ) =
R2ω2

0

18µkg
(17)

From energy conservation equation :

K0 + U0 + W
f
k

= K
T

+ U
T

(18)

Where K
T

denotes the Kinetic energy when there is no slipping:(The
equation is similar to 10.78 part d)

K
T

=
1

2
Icmω2 +

1

2
Mv2 =

3

4
Mv(T )2

=
3

4
M(axT )2 =

3

4
M(µkg

Rω0

3µkg
)2 (19)

K0 =
1

2
Icmω2

0 =
1

4
MR2ω2

0 (20)

(Where I dropped ”cm” from vcm throughout)
Combine (18) with (19), (20) and U0 = U

T
:

W
f
k

= K
T
− K0 =

3

4
(µkg

Rω0

3µkg
)2 − 1

4
MR2ω2

0 = −1

6
MR2ω2

0

W
f
k

= −1

6
MR2ω2

0

NOTE: This is more than

−f
k
x(T ) = −µkMg

R2ω2
0

18µkg
= − 1

18
MR2ω2

0

in magnitude because the coin is spinning rapidly (especially at first)
so that that relative distance of slipping of the coin edge and the
surface is a factor of 3 greater than x(T ).
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Figure 1: 10.70 part a
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Figure 2: 10.70 part b, c, d
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Figure 3: 10.101
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