HW Solutions \# 11 - 8.01 MIT - Prof. Kowalski

Universal Gravity.

1) 12.23 Escaping From Asteroid

Please study example 12.5 "from the earth to the moon".
a) The escape velocity derived in the example (from energy conservation) is :

$$
\begin{equation*}
v_{e s c}=\sqrt{\frac{2 G m_{A}}{R_{A}}} \tag{1}
\end{equation*}
$$

Where:
$m_{A} \equiv$ Asteroid's mass $=3.6 \times 10^{12} \mathrm{~kg}$
$R_{A} \equiv$ Asteroid's radius $=700 \mathrm{~m}$
$G=6.673 \times 10^{-11} \quad \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Plugging in these numbers into equation (1):

$$
v_{e s c}=0.83 \mathrm{~m} / \mathrm{s}
$$

You can certainly walk that fast on earth. However, you could not walk on the asteroid faster and faster to achieve this speed because you would go into orbit at a lower velocity $\left(v_{\text {esc }} / \sqrt{2}\right)$ at which point the normal force of the ground would be zero so there would be no more friction to accelerate you!

To get a feeling of how small this gravity is let's do some estimation of the time it takes to reach this velocity on the asteroid. The gravitational force $F_{g}=G m_{A} m / R_{A}^{2}$ on the surface of planet for a mass, $m \sim 100 \mathrm{~kg}$ is $\sim 0.05 \mathrm{~N}$. Let's take $\mu=1$. The friction would be $\sim 0.05 \mathrm{~N}$ so the acceleration $a \sim 0.05 / 100=0.0005 \mathrm{~m} / \mathrm{s}^{2}$ and the time t it takes to reach $v_{\text {esc }}=0.83 \mathrm{~m} / \mathrm{s}$ is:

$$
t \sim \frac{0.83}{0.0005}=1660 \mathrm{~s} \sim 30 \mathrm{~min}
$$

b) The question is about the comparison with vertical leap on earth. Using:

$$
v_{y}^{2}-v_{0 y}^{2}=-2 g_{\text {earth }} d
$$

we have:

$$
\begin{gathered}
d=\frac{v_{0 y}^{2}}{2 g d} \approx 0.03 \mathrm{~m} \\
d \approx 3 \mathrm{~cm}
\end{gathered}
$$

Even octogenarians can jump $\sim 10 \times$ this length.

2) 12.24 Satellite's altitude and mass

$m_{S}:=$ Satellite's mass.
$m_{E}:=$ Earth's mass.
$R:=$ The distance between the center of earth and satellite.
$F_{g}:=$ the gravitational force between the two masses.
$U:=$ the gravitational energy between the two masses.
a) F_{g} and U are given. By writing them in terms of m_{S} and m_{E} :

$$
\begin{align*}
& F_{g}=\frac{G m_{E} m_{S}}{R^{2}} \tag{2}\\
& U=-\frac{G m_{E} m_{S}}{R} \tag{3}
\end{align*}
$$

you can eliminate R:

$$
\begin{equation*}
R=-\frac{U}{F_{g}} \tag{4}
\end{equation*}
$$

With the numbers given in the problem $\left(\mathrm{F}=19.0 \mathrm{kN} ; \mathrm{U}=-1.39 \times 10^{11}\right.$ J) you'll get:

$$
R=7.31 \times 10^{6} \mathrm{~m}
$$

To find the altitude above the earth denoted by H you should subtract it from Earth radius:

$$
\begin{gathered}
H=R-R_{E}=7.31 \times 10^{6}-6.38 \times 10^{6}=9.3 \times 10^{5} \mathrm{~m} \\
H=9.3 \times 10^{5} \mathrm{~m}
\end{gathered}
$$

b) You can use the value of R and use either of (2) or (3) to find m_{S} :

$$
m_{S}=-\frac{R U}{G m_{E}}
$$

Where $m_{E}=5.97 \times 10^{24} \mathrm{~kg}$:

$$
m_{S}=2.55 \times 10^{3} \mathrm{~kg}
$$

3) $\mathbf{1 2 . 4 6}$ Gravitation from 3 masses

Let's use three indices appropriate for 3 masses namely:
$R_{\text {ight }} \equiv$ the mass at $(0.5 \mathrm{~m}, 0): r_{P R}=0.5 \mathrm{~m} ; m_{R}=1.0 \mathrm{~kg}$.
$U_{p} \equiv$ the mass at $(0,0.5 \mathrm{~m}): r_{P U}=0.5 \mathrm{~m} ; m_{U}=1.0 \mathrm{~kg}$.
$D_{\text {iagonal }} \equiv$ the mass at $(0.5 \mathrm{~m}, 0.5 \mathrm{~m}): r_{P D}=0.5 \sqrt{2} \mathrm{~m} ; m_{D}=2.0 \mathrm{~kg}$.
a) Because of symmetry we expect to get the total F acting on P along the diagonal. We it more more generally though.

The three forces acting on mass P at origin are ($F_{P R} \equiv \mathrm{~F}$ acting on P from R):

$$
\begin{gathered}
\overrightarrow{\mathbf{F}}_{P R}=+\frac{G m_{P} m_{R}}{r_{R}^{2}} \hat{\mathbf{x}} \\
\overrightarrow{\mathbf{F}}_{P U}=+\frac{G m_{P} m_{U}}{r_{U}^{2}} \hat{\mathbf{y}} \\
\overrightarrow{\mathbf{F}}_{P D}=+\frac{G m_{P} m_{D}}{r_{D}^{2}}\left(\frac{\hat{\mathbf{x}}+\hat{\mathbf{y}}}{\sqrt{2}}\right)
\end{gathered}
$$

Where $\sqrt{2}$ comes from the projection of $\overrightarrow{\mathbf{F}}_{D}$ (which is oriented at 45° with respect to x axis) on x and y axis.
and

$$
\overrightarrow{\mathbf{F}}_{P}=\overrightarrow{\mathbf{F}}_{P R}+\overrightarrow{\mathbf{F}}_{P U}+\overrightarrow{\mathbf{F}}_{P D}
$$

Using the values given in the problem you'll get the magnitude:

$$
F_{P}=9.67 \times 10^{-12} N
$$

which orients along the diagonal with unit vector $\hat{\mathbf{n}} \equiv \frac{1}{\sqrt{2}}(\hat{\mathbf{x}}+\hat{\mathbf{y}})$.

$$
\overrightarrow{\mathbf{F}}_{P}=9.67 \times 10^{-12} N \hat{\mathbf{n}}
$$

b) Use energy conservation

$$
\begin{equation*}
K_{2}+U_{2}=K_{1}+U_{1} \tag{5}
\end{equation*}
$$

where 1 denotes the situation that mass P is 300 m far away from origin. U_{1} is practically "zero" at this large distance. (this distance is 2 orders of magnitude larger so within 1% approximation you can ignore U_{1} :

$$
\begin{gathered}
K_{1}=0 \quad U_{1} \approx 0 \\
U_{2}=-G m_{P}\left(\frac{m_{R}}{r_{P R}}+\frac{m_{U}}{r_{P U}}+\frac{m_{D}}{r_{P D}}\right) \\
U_{2}+\frac{1}{2} m_{P} v_{2}^{2} \approx 0 \\
v_{2}=\sqrt{-\frac{2 U_{2}}{m_{P}}}
\end{gathered}
$$

The factor of m_{P} will be cancelled:

$$
\begin{equation*}
v_{2}=\sqrt{2 G\left(\frac{m_{R}}{r_{P R}}+\frac{m_{U}}{r_{P U}}+\frac{m_{D}}{r_{P D}}\right)} \tag{6}
\end{equation*}
$$

Plugging the given numbers into (6):

$$
\begin{gathered}
v_{2}=30.2 \pm 0.3 \mu \mathrm{~m} / \mathrm{s} \\
v_{2} \approx 30 \mu \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

NOTE: Gravity is a very weak force (e.g. compared with electrostatic forces), even if it had the speed v_{2} for the entire journey, it would take ~ 1 year to make this trip. In In fact it will take ~ 1 year if no other forces (e.g. from sunlight forces) come into play.

3) $\mathbf{1 2 . 6 8}$ Gravitational Potential

a) From the definition given the units of ϕ is the unit of energy divided by mass. We use the convention "[]" to denote the units:

$$
[\phi]=\frac{[U]}{[m]}=\frac{[m]\left[v^{2}\right]}{[m]}=\left[v^{2}\right]=\mathrm{m}^{2} / \mathrm{s}^{2}
$$

b) The gravitational potential energy of two masses m and m_{E} separated by a distance r (assuming Zero energy at infinity separation) is:

$$
U=-\frac{G m_{E} m}{r}
$$

From the "definition"

$$
\begin{equation*}
\phi=\frac{U}{m} \tag{7}
\end{equation*}
$$

we get:

$$
\phi(r)=-\frac{G m_{E}}{r}
$$

c) The problem asks for the quantity

$$
\Delta \phi=\phi\left(R_{E}+H\right)-\phi\left(R_{E}\right) .
$$

Where H denotes the altitude of the space station (400 km in this problem).

Using:

$$
\begin{aligned}
& G=6.673 \times 10^{-11} \quad \mathrm{Nm}^{2} / \mathrm{kg}^{2} . \\
& m_{E}=5.97 \times 10^{24} \mathrm{~kg} . \\
& R_{E}=6.38 \times 10^{6} \mathrm{~m} . \\
& H=400 \times 10^{3} \mathrm{~m} .
\end{aligned}
$$

You'll get:

$$
\Delta \phi=3.68 \times 10^{6} \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

d) If you assume that the initial and final velocities are "Zero" which is equivalent to a very gradual process. Using

$$
K_{i}+U_{i}+W_{l i f t}=K_{f}+U_{f}
$$

Here $K_{i}=K_{f}=0$ and $W_{\text {lift }}$ is the work that must be done against the gravity:

$$
W_{l i f t}=U_{f}-U_{i}=m \Delta \phi
$$

Using $m=15,000 \mathrm{~kg}$ and the result of part (c) you'll get:

$$
\Delta U=5.53 \times 10^{10} \mathrm{~J}
$$

e) To dock, you have to get up to the speed of the orbiting space station. So the K_{f} should be its final Kinetic energy as an orbiting payload. For a circular orbit we have: $K_{f}=-\frac{U_{f}}{2}$. Now going through the same procedure as part d but with $K_{f}=-\frac{U_{f}}{2}$:

$$
\begin{gathered}
W_{\text {orbit }}^{\prime}=U_{f}-U_{i}+K_{f}=U_{f}-U_{i}-\frac{U_{f}}{2}=+\frac{U_{f}}{2}-U_{i} \\
\frac{W_{\text {orbit }}^{\prime}}{W_{\text {lift }}}=\frac{U_{f}-U_{i}+K_{f}}{U_{f}-U_{i}}=\frac{+\frac{U_{f}}{2}-U_{i}}{U_{f}-U_{i}}=\frac{\frac{1}{2}-\frac{U_{i}}{U_{f}}}{1-\frac{U_{i}}{U_{f}}} \\
\frac{U_{i}}{U_{f}}=\frac{r_{f}}{r_{i}}=\frac{R_{E}+H}{R_{E}}=1+\frac{H}{R_{E}}=1.06 \\
\therefore \frac{W_{\text {orbit }}^{\prime}}{W_{\text {lift }}}=\frac{0.5-1.06}{1-1.06}=9.33
\end{gathered}
$$

So getting there is only $\sim 11 \%$ of the work- most is getting up to orbit speed.
*:

$$
F_{r}=m a_{r} \Rightarrow-\frac{G m_{E} m}{r^{2}}=-\frac{m v^{2}}{r} \Rightarrow K=\frac{1}{2} m v^{2}=\frac{G m_{E} m}{2 r}=-\frac{U}{2}
$$

3) 12.70 Effect of Air Drag on Satellite's Motion

a) In moving to a lower orbit by whatever means, gravity does positive work, and so the speed does increase.
b) From Calculus you know that for a general function $f(r)$ we have:

$$
\begin{equation*}
f(r-\Delta r)=f(r)-\frac{d f(r)}{d r} \Delta r \Rightarrow \Delta f=-\frac{d f(r)}{d r} \Delta r \tag{8}
\end{equation*}
$$

Where Δr is much smaller than $r\left(\frac{\Delta r}{r} \ll 1\right)$.
From the expression for $v(r)$ in circular motion:

$$
\begin{align*}
v(r) & =\sqrt{\frac{G m_{E}}{r}} \\
\frac{d\left(r^{\alpha}\right)}{d r} & =-\alpha r^{\alpha-1} \tag{9}
\end{align*}
$$

Combined with (8) you'll get:

$$
\Delta v=+(\Delta r / 2) \sqrt{\frac{G m_{E}}{r^{3}}}>0
$$

Combining $K=1 / 2 m v^{2}$ with (8) and (9) you'll get:

$$
\Delta K=+\frac{G m_{E} m}{2 r^{2}} \Delta r>0
$$

Combining $U==-\frac{G m_{E} m}{r}$ with (8) and (9) you'll get:

$$
\Delta U=-\frac{G m_{E} m}{r^{2}} \Delta r
$$

$$
\Delta U=-\frac{G m_{E} m}{r^{2}} \Delta r=-2 \Delta K
$$

Total energy is $E=K+U$ so:

$$
\begin{gathered}
\Delta E=\Delta K+\Delta U=\Delta K-2 \Delta K=-\Delta K \\
W=\Delta E=-\Delta K<0
\end{gathered}
$$

c) Since $\Delta r=50 \mathrm{~km}$ is much smaller than R_{E} itself so you can safely use equation (8) for functions v, K and U. For the rest you should just plug in the numbers and use:
$r=R_{E}+H=6.38 \times 10^{6}+300 \times 10^{3}=6.68 \times 10^{6} \mathrm{~m}$.
$\Delta r=50 \times 10^{3} \mathrm{~m}$.
$m=3000 \mathrm{~kg}$.

$$
\begin{gathered}
v=\sqrt{\frac{G m_{E}}{r}}=7.72 \times 10^{3} \mathrm{~m} / \mathrm{s} \\
\Delta v=+(\Delta r / 2) \sqrt{\frac{G m_{E}}{r^{3}}}=+28.9 \mathrm{~m} / \mathrm{s} \\
E=K+U=-\frac{G m_{E} m}{2 r}=-8.95 \times 10^{10} \mathrm{~J} \\
\Delta K=+\frac{G m_{E} m}{2 r^{2}} \Delta r=6.70 \times 10^{8} \mathrm{~J} \\
\Delta U=-2 \Delta K=-1.34 \times 10^{9} \mathrm{~J} \\
W=-\Delta K=-6.70 \times 10^{8} \mathrm{~J}
\end{gathered}
$$

As the term "burns up" suggests, the energy is converted to heat or is dissipated in the collisions of the debris with the ground.

