Cowotant \vec{a} Motion: 3D Motion P Posectile Ballestios
$\vec{r}=\overrightarrow{r_{0}}+\overrightarrow{v_{0}} t+\frac{1}{2} \vec{a} t^{2} \quad$.
$x(t)=x_{0}+v_{0 x} t+\frac{1}{\lambda} a_{x} t^{2}$
$y(t)=y_{0}+v_{0, t} t+\frac{1}{2} a_{y} t^{2}$
-Shert Range $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ (comel)

- No ai resistance
- No conth rostatuon
- Conostant \vec{a} motion

Assume
(1)

- Miven in $x z$-planz only
-z-anus is vertical
$-x$-axis hougental
$\begin{array}{ll}a_{x}=0 & v_{y}=0 \\ a_{y}=0 & y_{0}=0 \\ a_{2}=-g \hat{k} & g=9.81 \mathrm{~m} k^{2}\end{array}$

Lecture 6, Blackboard \#1

$$
\begin{align*}
& \frac{E_{y} s q \text { motime }}{x(t)=x_{0}+v_{0 x} t} \\
& y(t)=0 \text { © } \tag{1}\\
& z(t)=z_{0}+v_{0 t} t-\frac{1}{2} g t^{2}(3) \\
& \left.v_{2}(t)=v_{0 x} \text { (}\right) \\
& v_{2}(t)=v_{0 t}-g t \text { (s) } \\
& v_{y}(t)=0 \text { (3) }
\end{align*}
$$

$x(0, y(t), z(t) \Rightarrow \underset{\text { patecle traj. }}{\text { vot }}$
Motrons are decompled (Exp)
2D Motion-General
iD special Case
What bund Itrajectory is ballestex inotion?

Fnom (1) $x(t)=x_{0}+\bar{v}_{0, t} t$ $t=\frac{x-x_{0}}{\cos _{0}}$
$z(t)=z_{9}+v_{0 z}\left(\frac{x-x_{2}}{v_{0 x}}\right)-\frac{1}{2} g\left(\frac{x-x_{0}}{v_{0 x}}\right)^{2}$
$\left.\begin{array}{l}z(t)=A+B x^{2}+C x^{2} \\ A_{1} B_{1} C \text { Constands }\end{array}\right\}$ Pandola. \uparrow

Ballester Motion Miosile Balt Bullet Bomb Calculate:

Ravige

Assume
$\left.\begin{array}{l}z(0)=0 \\ x(0)=0\end{array}\right\}$ Ohegen of $x(0)=0 \quad \quad \quad t=0$
$\left.\bar{v}_{2}(0)=v_{z 0}\right\}$ Intual
$\left.v_{x}(0)=v_{x_{0}}\right\} \begin{aligned} & \text { ivelual } \\ & \text { Oxmery }\end{aligned}$ Camponeds

Moteon in $x z$-plame only!
At wax hesght: $v(t \quad v=0$
At wax herght: $v_{2}\left(t_{\text {max }}\right)=0$

$$
0=v_{0 z}-g t_{\max }
$$

$t_{\text {max }}=\frac{v_{0 t}}{g} T_{\text {men }} \cdot t_{0-\max }$.

$$
\begin{aligned}
z\left(t_{\text {max }}\right) & =v_{o z}^{g} t_{\text {max }}-\frac{1}{2} g t_{\text {max }}^{2} \\
& =v_{o f} \frac{v_{\text {ot }}}{g}-\frac{1}{2} g \frac{v_{o z}^{2}}{g z}=\frac{v_{\text {ct }}^{2}}{2 g}
\end{aligned}
$$

What is Rouge, R?
At impact $\Rightarrow z \equiv 0$! $0=v_{b z} t_{F}-\frac{1}{2} g t_{F}^{2}$ $t_{F} \Rightarrow$ Flight Time solve.

$$
\begin{aligned}
& \text { olve. } \\
& t_{F}=0 \quad(\text { stant }) \\
& t_{F}=\frac{2 v_{0 z}}{g}(\text { Impad }) \\
& \\
& =2 t_{\text {max }}
\end{aligned}
$$

x-motern
$R=v_{\text {ox }} t F$
$=\frac{2 \tau_{0 x} v_{0 z}}{g}(\mathrm{~m})$
Veloater:

$$
\begin{aligned}
& v(t)=v_{x}(t) \hat{\imath}+v_{z}(t) \hat{k} \\
& |v|=\sqrt{v_{x}^{2}+v_{z}^{2}}
\end{aligned}
$$

$$
\tan \theta=\frac{v_{x}(t)}{v_{x}(t)} \text { Direction }
$$

What is \vec{v} at $z=z_{\text {mix }}$? $V_{x}(t)=v_{0 x}$ coustant $)$ motion. $\nu_{z}\left(t=t_{\text {max }}\right)=\tau_{\partial z}-g \frac{v_{\Delta z}}{g}=0$ $\vec{V}\left(i_{\text {mer }}\right)=\vec{v}_{o x} \hat{\imath}$

Thajectory is Hongmal.

Lecture 6, Blackboard \#3

Pencetcte
 - haumeh angle θ
 - Intial Sped Vo
 $\omega_{0}=v_{0} \cos \theta$
 $v_{y y}=V_{0} \sin \theta$
 $$
\begin{gathered} \text { Max } R ? ? \\ \sin 2 \theta=1 \\ 2 \theta=90^{\circ} \\ \theta=45^{\circ} \\ t_{\text {mox }}(\theta=90)=\frac{v_{0}^{2}}{2 z} \end{gathered}
$$

$\theta=\delta^{\circ} \quad z_{\text {max }}=2.0 \mathrm{~m}=v_{0}^{2} / 2 g$
 $\times \frac{\theta}{15} \operatorname{Sm} 20_{.500}$ Range-1 Rawge-2
 $$
\times 20 \quad 643
$$
 $$
30 \quad .866
$$
 $$
\times 45 \quad 1.000
$$
 $$
\times 70 \quad 643
$$

$$
\begin{aligned}
R & =\frac{v_{0}^{2}}{q} \sin 2 \theta \\
& =2 z_{\text {max }} \sin 2 \theta
\end{aligned}
$$

balloties Paollm stradegy

$$
x(t)=x_{0}+\left(v_{0} \cos \theta\right) t
$$ $v_{1}(t)=v_{0} \cos \theta$

$v_{A}(t)=V_{\sin } \theta-g t$

$$
\begin{aligned}
& x(t)=x_{0}+\left(0_{0} \cos \theta\right) t \\
& z(t)=v_{0}+\left(N_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}
\end{aligned}
$$

3. Prose \rightarrow Symbols

Win \rightarrow Time
Whout \rightarrow Position
vilocity

5. Highart point $v_{z}=0$
6. Reange: $z=0$ 尽 ssine fernal value.
7. Stuty amower
7. Stuly anower

Dout it male sence?
Sign? Mrit?

