

Lecture 11, Blackboard \#1

Example: $\vec{a}=0 ; \vec{v}=$ corstant
$m=100 \mathrm{~kg}$ : $\mu_{k}=0.4 \quad F=$ ?
Nong yaxus $N+F \sin 30^{\circ}-m g=0$ (0)
$x$-anis $F \cos 30^{\circ}-f_{k}=6$
$f_{k}=\mu_{k} N$
$F \cos ^{2} 30^{\circ}-\mu_{h}\left[\operatorname{lng}-F \sin 30^{\circ}\right]=0$

(3)
$F=\frac{\mu_{1} m g}{m g}$
$F=\frac{\mu_{k} m g}{\cos 30^{\circ}+\mu_{k} \sin 30^{\circ}}$
$\begin{array}{ll}\theta & F \\ 0 & 392 \mathrm{~N}\end{array}$
36
36
$96 N$

Statuc Frictron: No moture

- Supfaces at reet
- Nor zuo furee to stant motion.
$f_{s} \leqslant \mu_{s} N$
$\mu_{5}=\operatorname{cosin}$ o $s+\frac{t a t i}{}$ fiction Is takes any value meded between zow and maxivem velue.
$f_{s}=\mu_{3}, N$ when metcon
(2)
is arout to start.
- Prop to Nismal force at max.

Inde if area
Empredl law
Opprece latual puch teyeng to
Hur loby.
Userally $\mu_{s}>\mu_{k}$
Mos dipinis on suatrees.

$f_{1}<\mu_{s}$
$f_{1}=F$$\quad N_{0}$ motian



Example Block-on- Plans:

(3) ${ }^{-} \mathrm{N} \cdot \mathrm{mg} \cos \theta=0$ $m g \sin \theta-f=0$
Anang so: $\vec{a}=0$ $v=0$ or cantant sped.


$$
2 F_{x}: F-f-m g \sin 60^{\circ}=m a_{x} \quad a_{x}-F-g \sin 60 \gamma u_{k} g \cos 60
$$

$$
a_{x}=\frac{F}{m}-g \sin 60>u_{k} g \cos 60
$$

mana

$$
\begin{aligned}
& \Sigma F_{y}: N-m g \cos \theta=0(n o a c c d) \\
& \therefore N=m g \cos \theta \\
& f=\mu_{k} N=\mu_{k} m g \cos 60^{\circ} \\
& a_{x}==\frac{m g \sin 60-\mu_{k} m g \cos 60}{m}
\end{aligned}
$$

$$
=\frac{20}{5}-9.81 \times 0.866-0.42 \times 9.81 \times 0.5
$$

change direction of f!

$$
\left.\begin{array}{l}
F-n g \sin 60^{\circ}+f=m a_{k} \\
N-\ln \operatorname{ars} 60^{\circ}=0
\end{array}\right\}
$$

$$
\begin{aligned}
& \text { Solve } a=-2.43 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { pa, tho with wosumet }
\end{aligned}
$$

par imo. with assumption!!



Tendulest $F(x)$ $D=-\frac{1}{2} \operatorname{Cs} A v^{2}$
$A \equiv$ Eff area
 $v=$ spoed of fall
$c=$ otag conff: (0.5-1.0)

$$
\begin{aligned}
& \text { Bosy ruleased } \\
& v=0: D=0
\end{aligned}
$$

Vunarace, Dincieases

$$
\text { Whem } D=m g, a \equiv 0 \text {. }
$$

$$
v: v_{t} \text { treminal sped. }
$$

$$
\frac{1}{2} \operatorname{cs} A V_{t}^{2}=m g .
$$

$$
v_{t}=\sqrt{\frac{2 m g}{C s A}} \mathrm{~m} / \mathrm{s}
$$

