

$$
\begin{array}{rlrl}
=\frac{1}{2} m\left(v_{4}^{2}-v_{x 2}^{2}\right) & W & W=\frac{1}{2} m\left[v_{x 2}+v_{x_{2}}+v_{22}-\left(v_{x 1}^{2}+v_{12}+v_{v_{2}}^{2}\right)\right]
\end{array}
$$ KE. Pdartial pe particle to do work fy virtue of veloatty! W: Wak done in panticle by the net force equals the

$V_{x}=$ veloaty $-x$ at P_{1}
$\tilde{U}_{x_{2}}=$ veloitg- x at P_{2}

$$
\begin{align*}
& \text { Repeat same fo } y \text { and } z \tag{2}\\
& W=\frac{1}{2} m=v_{s}^{2}+v_{w}^{2}+v_{n}^{2}-\left(w^{2}\right.
\end{align*}
$$

$$
W=\frac{1}{2} m\left(v_{\lambda}^{2} \cdot v_{1}^{2}\right)=K_{2}-K_{1}=\Delta K \Rightarrow W_{0 k} \cdot E_{\text {nugg }} T R_{m}
$$

$$
\frac{d V_{x}}{d i}=\frac{v_{1}}{d x} \cdot \frac{d v}{d t}=\frac{d v_{1}}{d x} \cdot \bar{U}_{x} \quad \quad \bar{v}_{x z}: \text { veloutg }-x \text { at } P_{2}
$$

$$
\begin{align*}
& \text { Example: } \\
& \text { Mere mase doare to } x_{A} \tag{3}\\
& \text { Phace urch upwend velocity } V_{0} \\
& \text { what is velocity of } x_{3} \text { ? } \\
& \text { Not fras mblo dk } \\
& F=F_{1}-F_{s}=m g \cdot k x \\
& W=\int_{x_{1}}^{\text {is }_{5}} F d x=\int_{x_{9}}^{x_{4}}(\lg -k x) d x \\
& W=\left.\left(m g x-\frac{1}{2} k x^{2}\right)\right|_{x_{\beta}} ^{x_{B}} \\
& =m g\left(x_{b}-x_{A}\right)-\frac{1}{2} k\left(x_{B}^{2}-x_{A}^{2}\right) \\
& =0.5 \times 9.8(0.2-0.5)-\frac{1}{2} 50\left(0.2^{2} \cdot 0.5^{2}\right) \\
& =3.78 \mathrm{~J} \\
& W=\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2} \\
& \therefore v_{B}^{2}=v_{A}^{2}+\frac{2 w}{11}=\left[(-2)^{2}+\frac{2 \times 3.78}{0.5}\right]= \pm 4.37 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

Examale

- Ball un reatical curde.

Fund munumum sped at B
so at top. A, texsion jant verishes.
Enengy and Dynamics.
At $t_{o p}$. $T_{+} m g=\frac{M v_{T}^{2}}{R}$

$$
\begin{aligned}
& T=0 \text { in limit fa min. v. } \\
& \therefore V_{T}^{2}=g R \\
& W_{T}=0 \quad T \perp \text { displacment. } \\
& W_{j}(A \rightarrow B)=m g H=K_{B}=k_{A} \\
& \quad n g(2 R)=\frac{1}{2} m \tilde{v}_{0}^{2}-\frac{1}{2} m V_{T}^{2}
\end{aligned}
$$

Gravitational peturieal Ererar $W=K_{2}-K_{2}=\Delta K \quad W-E$ Theorem
$K E=\frac{1}{2} m v^{z}$ Copacty to do work due to $P E=U(\vec{n})$ Coparety to dow work due to position in space
potistial (Energy!

$$
F_{g}=-m g \text { constant. Live }
$$

$$
\begin{aligned}
& \text { More from }\left(x_{1} y_{1} z_{1}\right) \rightarrow\left(x_{2} y_{2} z_{2}\right) \\
& \begin{aligned}
W_{g} & =\int_{z_{1}}^{z t} \vec{F} \cdot d \vec{z}=\int_{z_{1}}^{z 2}-m g d z \\
& =-\left.m g z\right|_{z_{1}} ^{z z}=-m g\left(z_{2}-z_{1}\right) \\
& =-U\left(z_{2}\right)+U\left(z_{1}\right)
\end{aligned}
\end{aligned}
$$

$u\left(z_{2}\right)=m g z_{2}$
$u\left(z_{1}\right)=m g z_{1}$
$U(z) \equiv$ Gravitational Pot. En.

- capactey to do worle
z abore sintace of reight
earta!!

Suproe: cruvity is mely foxe adtug
Ni_{g}

$$
\begin{aligned}
& k_{2}-k_{1}=-u\left(z_{2}\right)+u\left(z_{1}\right) \\
& k_{1}+u\left(z_{2}\right)=k_{1}+u\left(z_{1}\right)
\end{aligned}
$$

$k+1 e_{(z)}=$ Comentant of du motion
lal $E=K+u(t) \equiv$ Mromead Emgy - Cruatiy to do wink brcume for velinty AND Herame + poentions

If ond quanty,
$E=K \cdot u(₹)=$ com
$E: K \backslash u(z)=$ Constant
$E=\frac{1}{2} m v^{2}+m q z=\operatorname{cosot}$.
Law of Gomemation of Med En.
z incruases \Rightarrow v.dicumes
themases \Rightarrow reingeacen

Lecture 13, Blackboard \#4

Conordu two deffeent positions: F1 ond है?

$$
\begin{gathered}
\frac{1}{2} m v_{1}^{2}+m g z_{1}=\frac{1}{2} m v_{2}^{2}+m g z_{2} \\
v_{1}^{2}+\lambda g z_{1}=v_{2}^{2}+2 g z_{2} \\
v_{2}^{2}=v_{1}^{2}=2 g\left(z_{1}=z_{3}\right) \\
=-\lambda g\left(z_{2}-z_{1}\right)
\end{gathered}
$$

Proul cractant a kiminatres!!

$$
\begin{aligned}
& \text { Guarty + Othen Focee: } \\
& W=W_{g}+W_{\text {otha }}=K_{2}-K_{1}=\Delta K \\
& W_{\text {otha }}-\left(m g z_{2} \cdot m g z_{1}\right)=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2} \\
& W_{\text {othe }}=\frac{1}{2}\left(m v_{2}^{2}-m v_{1}^{2}\right)+m g\left(z_{2}-z_{1}\right) \\
& =\Delta k+\Delta u=\text { Changrin } k E+P E \\
& W_{\text {othm }}=\left(\frac{1}{2} m v_{2}^{2}+m g z_{2}\right)-\left(\frac{1}{2} m v_{1}^{2}+m g z_{1}\right) \\
& =\left(k_{2}+u_{2}\right)-\left(k_{1}+u_{1}\right) \\
& =E_{2}-E_{1}=\Delta E \\
& \text { If } W_{\text {tha }}>0 \text { ME increases } \\
& <0 \text { ME decraces. }
\end{aligned}
$$

To. men,$V_{T} \Rightarrow N \equiv 0$.

$$
\therefore v_{T}=\sqrt{g R} \quad v_{T}=\sqrt{2 g(H-2 R)}=\sqrt{g R} \Rightarrow H=\frac{5}{2} R
$$

$$
\begin{array}{ll}
\text { Example hoop-the-hoop }
\end{array}
$$

$$
\begin{aligned}
& \text { Atwort's Mackina } \\
& \text { - Releace } \mathrm{M}_{2} \text { and let dup } \\
& \text { - v=0 at } t=0 \\
& \text { Fwial } v=\text { ? } \\
& \begin{array}{l}
W_{\mathrm{NL}_{2}}=m_{2} g H-T H=\frac{1}{2} m_{2} v^{2} \theta \quad v=\sqrt{\frac{2\left(m_{2}-m_{1}\right)}{m_{2}+m_{1}} g H} \\
w_{a_{1}}:-m_{1} g H+T H=\frac{-1}{2} m_{1} v^{2} \theta
\end{array} \\
& \text { Q+ © (e) }\left(m_{2}-m_{1}\right) g H=\frac{1}{2}\left(m_{2}+x_{1}\right) v^{2} \quad \text { Calculate vo Foces } \\
& \text { No acculuaterins } \\
& \text { No vectores }
\end{aligned}
$$

