

$$
=\frac{1}{2} m v^{2}+\frac{1}{2} k_{x}^{2}=\frac{1}{2} k x_{0}^{2}
$$

1) $x>0 \quad \frac{\partial u}{\partial x}=k x>0 \quad F<0$ Athacture
is) $x<0 \quad \frac{\partial x}{\partial x}-k x<0 \quad F>0$ Athactive

iis) $x=0 \frac{\partial u}{\partial x}=0 \quad F=0 \quad$ Nartal
Harmome Oocellater!
Mstan bounded
Mbes botween turnang pirato dotroninul by pital E

Lecture 16, Blackboard \#2

$$
\begin{aligned}
& \theta=0 \frac{\partial u}{\partial \theta^{2}}>0 \text { stable. } \\
& \theta=\pi \frac{\partial u}{\partial \sigma^{2}}<0 \text { inctulue. }
\end{aligned}
$$

$$
\left.\underset{\substack{1+2}}{\substack{u_{0}=5.6 \times 10^{-21} \\
a=3.5 \times 10^{-10} \mathrm{~J}}} \left\lvert\, \begin{array}{c}
\text { m }
\end{array}\right.\right\}
$$

$$
\text { At equal: } F(())=0 \Rightarrow\left(\frac{4}{10}\right)^{-}=1 / 2 \Rightarrow r_{0}=39 \times 9 \times 0^{-10} \pi
$$

Example Peoplooresp
$F(x)=\frac{A}{x^{2}} \quad A>0$
$U(x)=\frac{A}{x}$
Like two sucal danges.

Power : Tame Rate of Doang Wark
$\bar{P}=\frac{\Delta \omega}{\Delta t} \quad$ Aherage Powrev
$P(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega t}{d t} I_{n s} t$. Paver.
$[p]=J / s=$ Waths.
$1 \mathrm{HP}=550 \mathrm{ff} \cdot 16 \mathrm{k}=745.7 \mathrm{~W}$

Powe \leftrightarrow Torces
$d \omega=\vec{F} \cdot d \vec{r}$
$P=\frac{d \omega}{d t}=\vec{F} \cdot \frac{d \vec{r}}{d t}=\vec{F} \cdot \vec{v}[\vec{F}=$ const $]$
Paver Depinds on Reprence Frame.
since rebety dypuns ar frame

Enegy \rightarrow Puren
$E=\int_{t_{1}}^{4,2} P(t) d t=P t$ frcocositant P.
$1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}=1000 \mathrm{~W} f \mathrm{c} \cdot \mathrm{l}$ eher.
1 Kcalove - $4.19 \times 10^{3} \mathrm{~J}$ (fuclo)

Exampl: Can up Incline

- Moves at constant \vec{v}
$F-f+m g \sin \theta=0 \quad[a=0]$
$F=700+1400 \times 9.8 \times \sin 10^{\circ}$
$=3100 \mathrm{~N}$
$P=\vec{F} \cdot \vec{v} \quad[\vec{F} / \vec{v}]$
= Fv
$=3100 \times 22$
$=6.8 \times 10^{4} \mathrm{~W}$
$=$ 9IHP
(7)
\qquad

