MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics

Problem Solving 3: Gauss's Law

REFERENCE: Section 4.2, 8.02 Course Notes.

Introduction

When approaching Gauss's Law problems, we described a problem solving strategy summarized below (see also, Section 4.7, 8.02 Course Notes):

Summary: Methodology for Applying Gauss's Law

Step 1: Identify the 'symmetry' properties of the charge distribution.
Step 2: Determine the direction of the electric field
Step 3: Decide how many different regions of space the charge distribution determines
For each region of space...
Step 4: Choose a Gaussian surface through each part of which the electric flux is either constant or zero

Step 5: Calculate the flux through the Gaussian surface (in terms of the unknown \boldsymbol{E})
Step 6: Calculate the charge enclosed in the choice of the Gaussian surface
Step 7: Equate the two sides of Gauss's Law in order to find an expression for the magnitude of the electric field

Then...
Step 8: Graph the magnitude of the electric field as a function of the parameter specifying the Gaussian surface for all regions of space.

You should now apply this strategy to the following problem.

Question: Concentric Cylinders

A long very thin non-conducting cylindrical shell of radius b and length L surrounds a long solid non-conducting cylinder of radius a and length L with $b>a$. The inner cylinder has a uniform charge $+Q$ distributed throughout its volume. On the outer cylinder we place an equal and opposite to charge, $-Q$. The region $a<r<b$ is empty.

Step 1 Question: (Answer on the tear-sheet at the end!) What is the 'symmetry' property of the charge distribution here?

Step 2 Question: (Answer on the tear-sheet at the end!) What is the direction of the electric field?

Step 3 Question: (Put your answer on the tear-sheet at the end!) How many different regions of space does the charge distribution determine (in other words, how many different formulae for \mathbf{E} are you going to have to calculate?)

Step 4 Question: (Put your answer on the tear-sheet at the end!) For each region of space, describe your choice of a Gaussian surface. What variable did you choose to parameterize your Gaussian surface? What is the range of that variable?

Step 5 Question: (Put your answer on the tear-sheet at the end!) For the region for $r<a$, calculate the flux through your choice of the Gaussian surface. Your expression should include the unknown electric field for that region.

Step 6 Question: (Put your answer on the tear-sheet at the end!) For the region for $r<a$, write the charge enclosed in your choice of Gaussian surface (this should be in terms of $Q, r \& a$, NOT E).

Step 7 Question 1: (Put your answer on the tear-sheet at the end!) For the region for $r<a$, equate the two sides of Gauss's Law that you calculated in steps 5 and 6, in order to find an expression for the magnitude of the electric field.

Step 7 Question 2: (Put your answer on the tear-sheet at the end!) Repeat the same procedure in order to calculate the electric field as a function of r for the regions $a<r<b$.

Step 8 Question: (Put your answer on the tear-sheet at the end!) Make a graph in the space below of the magnitude of the electric field as a function of the parameter specifying the Gaussian surface for all regions of space.

Penultimate Question (Put your answer on the tear-sheet at the end!) What is the potential difference between $r=a$ and $r=0$? That is, what is $\Delta V=V(a)-V(0)$?

Final Question: (Put your answer on the tear-sheet at the end!) What is the potential difference between $r=b$ and $r=a$? That is, what is $\Delta V=V(b)-V(a)$?

Sample Exam Question (If time, try to do this by yourself, closed notes)

An semi-infinite (infinite in y - and z-, bounded in x) slab of charge carries a charge per unit volume ρ. The lower plot shows the electric potential $V(x)$ due to this slab as a function of horizontal distance x from the center of the slab. It is linear for $x<-1 \mathrm{~m}$ and $x>1 \mathrm{~m}$, and given by $V(x)=\frac{15}{2} x^{2}-\frac{25}{2}$ for $-1 \mathrm{~m}<x<1 \mathrm{~m}$.
(a) What is the x-component of the electric field in the region $x<-1 \mathrm{~m}$?
(b) What is the x-component of the electric field in the region $x>1 \mathrm{~m}$?
(c) What is the x-component of the E field in the region $-1 \mathrm{~m}<x<1 \mathrm{~m}$?
(d) Use Gauss's Law and your answers above to find the charge density ρ of the slab.

Tear off this page and turn it in at the end of class !!!!

Note:
 Writing in the name of a student who is not present is a COD offense.

Group \qquad (e.g. L02 10A Please Fill Out)

Names \qquad
\qquad
\qquad

Problem Solving 3: Using Gauss’s Law

Step 1 Question: What is the 'symmetry' property of the charge distribution here?

Step 2 Question: What is the direction of the electric field?

Step 3 Question: How many different regions of space does the charge distribution determine?

Step 4 Question: For each region of space, describe your choice of the Gaussian surface. What variable did you choose to parameterize your Gaussian surface? What is the range of that variable?

Step 5 Question: For the region for $r<a$, calculate the flux through your choice of the Gaussian surface. Your expression should include the unknown electric field for that region.

Step 6 Question: For the region for $r<a$, calculate the charge enclosed in your choice of the Gaussian.

Step 7 Question 1: For the region for $r<a$, equate the two sides of Gauss's Law that you calculated in steps 5 and 6 , in order to find an expression for the magnitude of the electric field.

Step 7 Question 2: Repeat the same procedure in order to calculate the electric field as a function of r for the regions $a<r<b$.

Step 8 Question: Make a graph in the space below of the magnitude of the electric field as a function of the parameter specifying the Gaussian surface for all regions of space.

Penultimate Question: What is the potential difference between $r=a$ and $r=0$? That is, what is $\Delta V=V(a)-V(0)$?

Final Question: What is the potential difference between $r=b$ and $r=a$? That is, what is $\Delta V=V(b)-V(a)$?

