## MASSACHUSETTS INSTITUTE OF TECHNOLOGY <br> Department of Physics

## Problem Solving 9: Driven LRC Circuits

## OBJECTIVES

1. To explore the relationship between driven current and driving emf in three simple circuits that contain: (1) only resistance; (2) only inductance; and (3) only capacitance.
2. To examine these same relationships in the general case where $R, L$, and $C$ are all present, and to do two sample problems on the $L R C$ circuits.

REFERENCE: Sections 12.1 - 12.4, 8.02 Course Notes.

## General Properties of Driven LRC Circuits

An LRC circuit is the electrical analog of a mass on a spring. We distinguish two behaviors. In the first, we consider its "free" oscillations that occur when we "kick" the circuit (charge the capacitor or send a constant current through) and then stand back and watch it oscillate. If we do this we will see a natural frequency of oscillation that decays in a finite time.

A second behavior emerges if we "drive" the $L R C$ circuit with a source of emf with some (arbitrary) amplitude and frequency. If we drive the circuit with an emf $V(t)=V_{0} \sin \omega t$, where $\omega$ is any frequency we desire (we get to pick this) and $V_{0}$ is any amplitude we desire, then the "driven" response of the system is given by

$$
I(t)=I_{0} \sin (\omega t-\phi)
$$

where

$$
\begin{equation*}
I_{0}=\frac{V_{0}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}, \quad \tan \phi=\left(\frac{\omega L-\frac{1}{\omega C}}{R}\right) \tag{8.1}
\end{equation*}
$$

Note the "driven" response is at the (arbitrary) frequency of the driver, and not at the natural frequency of the system. However the system will show maximum response to the driving emf when the driving frequency is at the natural frequency of oscillation of the system, i.e. when $\omega=1 / \sqrt{L C}$. We can compute the average power consumed by the circuit by calculating the time average of $I(t) V(t)$ (see Section 12.4, 8.02 Course Notes):

$$
\begin{equation*}
\langle P(t)\rangle=\langle I(t) V(t)\rangle=\frac{1}{2} I_{0} V_{0} \cos \phi \tag{8.2}
\end{equation*}
$$

## Example 1: Driven circuit with resistance only

We begin with a circuit which contains only resistance. The circuit diagram is shown below.


The circuit equation is

$$
I_{R}(t) R-V(t)=0
$$

Question 1: What is the amplitude $I_{R 0}$ and phase $\phi$ of the current $I_{R}(t)=I_{R 0} \sin (\omega t-\phi)$ ?
Answer: (answer this and subsequent questions on the tear-off sheet at the end)

Question 2: What values of $L$ and $C$ do you choose in the general equation (8.1) to reproduce the result you obtained in your answer above? HINT: This is as easy (and as strange) as you probably first think.
Answer:

Question 3: What is the time-averaged power $\left\langle P_{R}(t)\right\rangle=\left\langle I_{R}(t) V_{R}(t)\right\rangle$ dissipated in this circuit? You will need to know that the time average of $\sin ^{2} \omega t$ is $\left\langle\sin ^{2} \omega t\right\rangle=1 / 2$.
Answer:

## Example 2: Driven circuit with inductance only

Now suppose the voltage source $V(t)=V_{0} \sin (\omega t)$ is connected in a circuit with only self-inductance. The circuit diagram is


The circuit equation is

$$
V(t)=L \frac{d I}{d t}
$$

Question 4: Solve the above equation for the current as a function of time. If we write this current in the form $I_{L}(t)=I_{L 0} \sin (\omega t-\phi)$, what is the amplitude $I_{L 0}$ and phase $\phi$ of the current? You may need to use the trigonometric identity that $\sin (\omega t-\phi)=\sin \omega t \cos \phi-\sin \phi \cos \omega t$.
Answer:

Question 5: What values of $R$ and $C$ do you choose in the general equation (8.1) to reproduce the result you obtained in the question above?
Answer:

Question 6: What is the time-averaged power $\left\langle P_{L}(t)\right\rangle=\left\langle I_{L}(t) V_{L}(t)\right\rangle$ dissipated in this circuit? You will need to know that the time-average of $\sin \omega t \cos \omega t$ is $\langle\sin \omega t \cos \omega t\rangle=0$.
Answer:

## Example 3: Driven circuit with capacitance only

The ac voltage source $V(t)=V_{0} \sin (\omega t)$ is connected in a circuit with capacitance only. The circuit diagram is


The circuit equation for this circuit is

$$
\frac{Q}{C}-V(t)=0
$$

If we take the time derivative of this equation we get

$$
\frac{I_{C}}{C}-\frac{d}{d t} V(t)=\frac{I_{C}}{C}-\omega V_{0} \cos \omega t=0
$$

Question 7: Solve the above equation for the current as a function of time. If we write this current in the form $I_{C}(t)=I_{C 0} \sin (\omega t-\phi)$, what is the amplitude $I_{C 0}$ and phase $\phi$ of the current? You may need to use the trigonometric identity that $\sin (\omega t-\phi)=\sin \omega t \cos \phi-\sin \phi \cos \omega t$.

## Answer:

Question 8: What is the time-averaged power $\left\langle P_{C}(t)\right\rangle=\left\langle I_{C}(t) V_{C}(t)\right\rangle$ dissipated in this circuit? You will need to know that the time-average of $\sin \omega t \cos \omega t$ is $\langle\sin \omega t \cos \omega t\rangle=0$.
Answer:

## Sample Problem 1

The circuit shown below contains an AC generator which provides a source of sinusoidally varying emf $\varepsilon(t)=\varepsilon_{0} \sin \omega t$, a resistor with resistance $R$, and a "black box", which contains either an inductor or a capacitor, but not both. The amplitude of the driving emf, $\varepsilon_{0}$, is $100 \sqrt{2}$ Volts, and the angular frequency $\omega$ is $10 \mathrm{rad} / \mathrm{sec}$. We measure the current in the circuit and find that it is given as a function of time by the expression: $I(t)=(10 \mathrm{Amps}) \sin (\omega t+\pi / 4) \quad\left[\right.$ Note: $\pi / 4$ radians $=45^{\circ}$, $\left.\tan (\pi / 4)=+1\right]$.

Question 9: Does this current lead or lag the emf $\varepsilon(t)=\varepsilon_{0} \sin (\omega t)$
Answer:


Question 10: What is the unknown circuit element in the black box--an inductor or a capacitor?
Answer:

Question 11: What is the numerical value of the resistance $R$ ? Indicate units. Answer:

Question 12: What is the numerical value of the capacitance or of the inductance, as the case may be?. Indicate units.

## Answer:

## Sample Problem 2

The circuit shown below contains an AC generator which provides a source of sinusoidally varying emf $\varepsilon(t)=\varepsilon_{0} \sin (\omega t)$, a resistor with resistance $R=3 \Omega$, and a "black box", which contains either an inductor or a capacitor, or both. The amplitude of the driving emf, $\varepsilon_{0}$, is 6 Volt. We measure the current in the circuit at an angular frequency $\omega=1$ radians $/ \mathrm{sec}$ and find that it is exactly in phase with the driving emf. We measure the current in the circuit at an angular frequency $\omega=2$ radians $/ \mathrm{sec}$ and find that it is out of phase with the driving emf by exactly $\pi / 4$ radians.

Question 13: What does the black box contain - an inductor or a capacitor, or both? Explain your reasoning. Does current lead or lag at $\omega=2$ radians $/ \mathrm{sec}$ ?

## Answer:



Question 14: What is the numerical value of the capacitance or of the inductance, or of both, as the case may be? Indicate units. Your answer(s) will involve simple fractions only, you will not need a calculator to find the value(s).

## Answer:

Question 15: What is numerical value of the time-averaged power dissipated in this circuit when $\omega=1$ radians $/ \mathrm{sec}$ ? Indicate units, that is the time-average of $I(t) V(t)$. You will need to know that the time-average of $\sin ^{2} \omega t$ is $1 / 2$.
Answer:

## Sample Exam Question (If time, try to do this by yourself, closed notes)

A circuit consists of a battery with emf $V$, an inductor $L$, a capacitor $C$, and two resistors, each with resistance $R$, as shown in the sketch. The capacitor is initially uncharged and there is no current flowing anywhere in the circuit. The switch S has been open for a long time, and is then closed, as shown in the diagram.

(a) Using Kirchhoff's Loop Rule as modified for inductors, what is the sum of the potential drops around the outer loop (the loop including both the emf and the inductor) if we move clockwise around the loop?
(b) Just after the switch $S$ is closed, what are the currents $i_{1}, i_{2}$, and $i_{3}$ in terms of the given quantities? Assume that the left loop of the circuit has zero inductance. You do not have to solve any differential equations to answer this question.
(c) A long, long time after switch $S$ is closed, what are the currents $i_{1}, i_{2}$, and $i_{3}$ ? You do not have to solve any differential equations to answer this question.
(d) A long, long time after switch $S$ is closed, what is the charge on the capacitor? You do not have to solve any differential equations to answer this question.
(e) The switch S is now opened again. Just after the switch is opened again, what are the currents $i_{1}, i_{2}$, and $i_{3}$ in terms of the given quantities? Assume that the left loop of the circuit has zero inductance.


# MASSACHUSETTS INSTITUTE OF TECHNOLOGY <br> Department of Physics 

Tear off this page and turn it in at the end of class !!!!
Note: Writing in the name of a student who is not present is a COD offense.

## Problem Solving 10: Driven RLC Circuits

Group $\qquad$ (e.g. L02 6A Please Fill Out)

Names $\qquad$
$\qquad$
$\qquad$
Example 1: Driven circuit with resistance only
Question 1: What is the amplitude $I_{R 0}$ and phase $\phi$ of the current $I_{R}(t)=I_{R 0} \sin (\omega t-\phi)$ ?

Answer: $\quad I_{R 0}$ : $\qquad$ $\phi$ : $\qquad$

Question 2: What values of $L$ and $C$ do you choose in the general equation (8.1) to reproduce the result you obtained in your answer above?

Answer: L $\qquad$ C: $\qquad$
Question 3: What is the time-averaged power $\left\langle P_{R}(t)\right\rangle=\left\langle I_{R}(t) V_{R}(t)\right\rangle$ dissipated?
Answer: $\quad\left\langle P_{R}(t)\right\rangle=$ $\qquad$

## Example 2: Driven circuit with inductance only

Question 4: What is the amplitude $I_{L 0}$ and phase $\phi$ of the current $I_{L}(t)=I_{L 0} \sin (\omega t-\phi)$ ?
Answer:

$$
I_{L 0}:
$$

$\qquad$ $\phi$ : $\qquad$
Question 5: What values of $R$ and $C$ do you choose in the general equation (8.1) to reproduce the result you obtained in the question above?

Answer:
R: $\qquad$ C: $\qquad$

Question 6: What is the time-averaged power $\left\langle P_{L}(t)\right\rangle=\left\langle I_{L}(t) V_{L}(t)\right\rangle$ dissipated?

Answer: $\quad\left\langle P_{L}(t)\right\rangle=$ $\qquad$
Example 3: Driven circuit with capacitance only
Question 7: What is the amplitude $I_{C 0}$ and phase $\phi$ of the current $I_{C}(t)=I_{C 0} \sin (\omega t-\phi)$ ?

Answer: $\quad I_{C 0}$ $\qquad$ $\phi:$ $\qquad$
Question 8: What is the time-averaged power $\left\langle P_{C}(t)\right\rangle=\left\langle I_{C}(t) V_{C}(t)\right\rangle$ dissipated?

Answer: $\quad\left\langle P_{C}(t)\right\rangle=$ $\qquad$

## Sample Problem 1:

Question 9: Does this current lead or lag the emf $\delta(t)=\varepsilon_{0} \sin \omega t$
Answer: $\qquad$
Question 10: What is the unknown circuit element in the black box--an inductor or a capacitor?
Answer: $\qquad$

Question 11: What is the numerical value of the resistance $R$ ? Indicate units.
Answer: $\qquad$
Question 12: What is the numerical value of the capacitance or of the inductance? Indicate units.
Answer: $\qquad$

## Sample Problem 2:

Question 13: What does the black box contain--an inductor or a capacitor, or both? Explain your reasoning. Does the current lead or lag at $\omega=2$ radians $/ \mathrm{sec}$ ?
Answer:

Question 14: What is the numerical value of the capacitance or of the inductance, or of both, as the case may be? Indicate units. Your answer(s) will involve simple fractions only, you will not need a calculator to find the value(s).

Answer: $L$ : $\qquad$ $C:$ $\qquad$
Question 15: What is numerical value of the time-averaged power dissipated in this circuit when $\omega=1$ radians $/ \mathrm{sec}$ ? Indicate units.

## Answer:

