Massachusetts Institute of technology Department of Physics
 8.022 Fall 2004/11/09

Quiz \#2: Formula sheet

- Work on the problems you know how to solve first!
- Exam is closed book and closed notes. Useful math formulae are provided below.
- No calculators will be needed.

Potential: $\phi(a)-\phi(b)=-\int_{b}^{a} \vec{E} \cdot d \vec{s}$
Energy of E: The energy of an electrostatic configuration $U=\frac{1}{2} \int_{V} \rho \phi d V=\frac{1}{8 \pi} \int E^{2} d V$.
Pressure: A layer of surface charge density σ exerts a pressure $P=2 \pi \sigma^{2}$.
Current density: $\vec{J}=\rho \vec{v}$.
Current: $I=d Q / d t=\int_{S} \vec{J} \cdot d \vec{a}$ (I is the current through surface S).
Continuity: $\vec{\nabla} \cdot \vec{J}=-\frac{\partial \rho}{\partial t}$
Ohm's law: $\vec{J}=\sigma_{c} \vec{E}$ (microscopic form): $V=I R$ (macroscopic form)
Capacitance: $Q=C V$. Energy stored in capacitor: $U_{C}=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}$
Lorentz force: $\vec{F}=q \vec{E}+q \frac{\vec{v}}{C} \times \vec{B}$
Magnetic force on current: $\vec{F}=\frac{I}{c} d \vec{l} \times \vec{B}$; or $\vec{F} / L=\frac{\vec{I}}{c} \times \vec{B}$
Vector potential: $\vec{B}=\nabla \times \vec{A} ; \quad \vec{A}=\frac{l}{C} \int \frac{d \vec{l}}{r}$
Biot-Savart law: $d \vec{B}=I d \vec{l} \times \hat{r} /\left(c r^{2}\right)$
Maxwell's equations in differential form (so far!!!):

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=4 \pi \rho \quad \text { (Gauss's law) } \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \quad \text { (Faraday's law) } \\
& \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J} \text { (Ampere's law) }
\end{aligned}
$$

Maxwell's equations in integral form (so far):

$\int_{S} \vec{E} \cdot d \vec{a}=4 \pi Q \quad$ (Gauss's law. Q is charge enclosed by surface S)
$\int_{C} \vec{E} \cdot d \vec{s}=-\frac{1}{c} \frac{\partial \phi_{B}}{\partial t}=$ e.m.f. (Faraday's law. ϕ_{B} is \vec{B} flux through surface bounded by C.)
$\int_{C} \vec{B} \cdot d \vec{s}=\frac{4 \pi}{C} \mathrm{I}$ (Ampere's law. I is current enclosed by contour C.)
Self inductance: $\varepsilon=-L d I / d t$
Mutual Inductance: $\mathcal{E}_{1}=-M_{12} d I_{2} / d t ; \mathcal{E}_{2}=-M_{21} d I_{1} / d t ; M_{12}=M_{21}$
Magnetic energy: $U=\frac{1}{8 \pi} \int B^{2} d V$
Energy stored in an inductor: $U_{L}=\frac{1}{2} L I^{2}$

Time dilation: Moving clocks run slow: $\Delta t_{\text {stationary }}=\gamma \Delta t_{\text {moving }}$
Length contraction: Moving rulers are shortened: $L_{\text {stationary }}=L_{\text {moving }} / \gamma$
Transformation of fields: \| denotes parallel to \vec{v}, \perp denotes perpendicular to \vec{v}

$$
\begin{array}{ll}
\vec{E}_{\|}^{\prime}=\vec{E}_{\|} & \vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\frac{\vec{v}}{c} \times \vec{B}_{\perp}\right) \\
\vec{B}_{\|}^{\prime}=\vec{B}_{\|} & \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\frac{\vec{v}}{c} \times \vec{E}_{\perp}\right)
\end{array}
$$

Useful Math

Cartesian.

Gradient: $\nabla t=\frac{\partial t}{\partial x} \hat{\boldsymbol{x}}+\frac{\partial t}{\partial y} \hat{\boldsymbol{y}}+\frac{\partial t}{\partial z} \hat{\boldsymbol{z}}$
Divergence: $\nabla \cdot \overrightarrow{\mathbf{v}}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}$
Curl: $\nabla \times \overrightarrow{\boldsymbol{v}} \boxminus\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\boldsymbol{z}}$
Laplacian: $\nabla^{2} t=\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

Spherical.

Gradient: $\nabla t=\frac{\partial t}{\partial r} \hat{\boldsymbol{r}}+\frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\varphi}}$
Divergence: $\nabla \cdot \overrightarrow{\mathbf{v}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
Curl:
$\nabla \times \overrightarrow{\boldsymbol{v}} \neq \frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta v_{\phi}\right)}{\partial \theta}-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{r}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial\left(r v_{\phi}\right)}{\partial r}\right] \hat{\boldsymbol{\theta}}+\frac{1}{r}\left[\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\boldsymbol{\varphi}}$
Laplacian: $\nabla^{2} t=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} t}{\partial \phi^{2}}$

Cylindrical.

Gradient: $\nabla t=\frac{\partial t}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\varphi}}+\frac{\partial t}{\partial z} \hat{\boldsymbol{z}}$
Divergence: $\nabla \cdot \overrightarrow{\mathbf{v}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho v_{\rho}\right)+\frac{1}{\rho} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z}$
Curl: $\nabla \times \overrightarrow{\mathbf{v}}=\left[\frac{1}{\rho} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right] \hat{\boldsymbol{\rho}}+\left[\frac{\partial v_{\rho}}{\partial z}-\frac{\partial v_{z}}{\partial \rho}\right] \hat{\boldsymbol{\varphi}}+\frac{1}{\rho}\left[\frac{\partial\left(\rho v_{\phi}\right)}{\partial \rho}-\frac{\partial v_{\rho}}{\partial \theta}\right] \hat{\mathbf{z}}$

$$
\text { Laplacian: } \nabla^{2} t=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial t}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} t}{\partial \mathrm{z}^{2}}
$$

Binomial expansion:

$$
(1 \pm x)^{n}=1 \pm \frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!} \pm \cdots\left(x^{2}<1\right) ;(1 \pm x)^{-n}=1 \mp \frac{n x}{1!}+\frac{n(n+1) x^{2}}{2!} \mp \cdots\left(x^{2}<1\right)
$$

Stokes' theorem: $\oint_{C} \vec{F} \cdot d \vec{s}=\int_{S} \operatorname{curl} \vec{F} \cdot d \vec{A}$
Gauss' theorem: $\oint_{S} \vec{F} \cdot d \vec{A}=\int_{V} \operatorname{div} \vec{F} d V$

