8.022 (E\&M) - Lecture 16

Topics:

- Inductors in circuits
- RL circuits
- LC circuits
- RCL circuits

Last time

Our second lecture on electromagnetic inductance

- 3 ways of creating emf using Faraday's law:
- Change area of circuit S(t)
- Change angle between B and S \rightarrow AC generators
- Change B magnitude
- Self and mutual inductance
- Energy stored in inductor
- Applications: transformers

Today is our 3rd lecture on inductance: inductors in circuits

RL circuits: intuitive description

- At $t=0$, close S1:
- Lentz's law opposes change in Φ_{B} through L
- Since $\Phi_{B}(t=0)=0$, L will impede current flow $\rightarrow I(0)=0$
- As time passes, I will start flowing saturating at I=V/R
- After a long time, simultaneously open S1 and close S2:
- Lentz's law opposes change in Φ_{B} through L
- Back emf will keep current flowing for a while
- R dissipates power \rightarrow the current will die exponentially

RL circuits: quantitative description

- At t=0: close S1
- Kirchoff's rule \#2: $V-I R-L \frac{d I}{d t}=0$

Rewrite as: $-I+\frac{V}{R}=\frac{L}{R} \frac{d l}{d t} \Rightarrow \frac{d I}{I-\frac{V}{R}}=-\frac{R}{L} d t$

RL circuits: quantitative description(2)

- At t=t': open S1 and close S2
- Kirchoff's rule \#2: $\quad-I R-L \frac{d I}{d t}=0$

$$
\begin{aligned}
& \text { Rewrite as: }-I=\frac{L}{R} \frac{d I}{d t} \Rightarrow \int_{I=I_{0}}^{I=I(t)} \frac{d I}{I}=-\int_{t=0}^{t} \frac{R}{L} d t \\
& \Rightarrow \ln \frac{I}{I_{0}}=-\frac{R}{L} t \Rightarrow I=\frac{V}{R} e^{-\frac{R}{L} t}
\end{aligned}
$$

- Graphically:

I (t)

RL circuits: interpretation of results

- How do we interpret these results?
- Inductors cause currents to have an "inertia"
- If no current flowing: L forces I to build up gradually
- If current is flowing: L will do what it takes to make it continue (backemf)
- Asymptotic behavior when "charging" L
- At $t=0, I=0$, as if L were an open circuit $\quad\{t=0: L \rightarrow$ open circuit
- At $t=$ infinity, $I=V / R$, as if L did not exist $\quad t=\infty: L \rightarrow$ short circuit
G. Sciolla - MIT
8.022 - Lecture 16

RL circuits: time constant

- Results of RL circuit are exponentials, as in RC circuits
- RC circuit: time constant $\tau=R C$
- RL circuits: time constant $\tau=L / R$
- NB: time constant is the time it takes the exponential function to decrease (increase) to $1 / \mathrm{e}$ (1-1/e) of its original (final) value
- Check units
- cgs: $[\mathrm{L}] /[\mathrm{R}]=\left(\mathrm{sec}^{2} / \mathrm{cm}\right) /(\mathrm{sec} / \mathrm{cm})=\mathrm{sec}$
- SI: $[L] /[R]=H / \Omega=(V \sec / A) /(V / A)=\sec$
G. Sciolla - MIT 8.022 - Lecture 16

LR time constant

- Consider the following circuit

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{LdI} / \mathrm{dt}
$$

G. Sciolla - MIT

- On the oscilloscope:
- $\mathrm{V}_{\text {input }}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{R}}, \mathrm{I}$ in the circuit

LC circuits

- Start with charged capacitor and close switch at $\mathrm{t}=0$:
- Kirchoff's second rule: $\frac{Q}{C}-L \frac{d I}{d t}=0$

Since $\mathrm{I}=-\frac{\mathrm{dQ}}{\mathrm{dt}}: \quad \frac{d^{2} Q}{d t^{2}}+\frac{Q}{L C}=0$

- How to solve this? Educated guess: $Q(t)=A \cos \omega_{0} t+B \sin \omega_{0} t$
$\Rightarrow \frac{d^{2} Q}{d t^{2}}=-\omega_{0}^{2} A \cos \omega_{0} t-\omega_{0}^{2} B \sin \omega_{0} t=-\omega_{0}^{2} Q(t) \Rightarrow \omega_{0}=\frac{1}{\sqrt{L C}}$
G. Sciolla - MIT
8.022 - Lecture 16

LC circuits: solution

- Plug this in the differential equation:

$$
\frac{d^{2} Q(t)}{d t^{2}}=-\frac{1}{L C} Q(t) \Rightarrow-\omega_{0}^{2} Q(t)=-\frac{1}{L C} Q(t) \Rightarrow \omega_{0}=\frac{1}{\sqrt{L C}}
$$

- Determine constants A and B from initial conditions:
- $Q(t=0)=Q_{0}=A \cos (0)+B \sin (0) \quad \rightarrow A=Q_{0}$
- $I(t=0)=0=-\omega_{0} A \sin (0)+\omega_{0} B \cos (0) \rightarrow B=0$
- Complete solution:

$$
\begin{aligned}
& Q(t)=Q_{0} \cos \omega_{0} t \Rightarrow V_{C}(t)=\frac{Q(t)}{C}=\frac{Q_{0}}{C} \cos \omega_{0} t \\
& I(\mathrm{t})=-\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{Q}_{0}}{\sqrt{\mathrm{LC}}} \sin \omega_{0} \mathrm{t}
\end{aligned}
$$

- NB: current and voltages are off by 90 degrees

LC circuits: solution

Graphical representation of the solution:
I(t)
$\mathrm{V}(\mathrm{t})$

Energy conservation

- Energy stored in the capacitor over time:

$$
U_{C}(t)=\frac{Q^{2}(t)}{2 C}=\frac{Q_{0}^{2}(t)}{2 C} \cos ^{2} \omega_{0} t
$$

- Energy stored in the inductor:

$$
U_{L}(t)=\frac{1}{2} L /(t)^{2}=\frac{1}{2} L \frac{Q^{2}{ }_{0}}{L C} \sin ^{2} \omega_{0} t=\frac{Q_{0}^{2}}{2 C} \sin ^{2} \omega_{0} t
$$

- Total energy:

$$
U(t)=U_{L}(t)+U_{C}(t)=\frac{Q_{0}{ }^{2}}{2 C}\left(\sin ^{2} \omega_{0} t+\cos ^{2} \omega_{0} t\right)=\frac{Q_{0}{ }^{2}}{2 C}
$$

- What is happening over time?
- Energy swings back and forth between C and L but at any moment in time the total energy is equal to the energy initially stored in the capacitor: Energy is conserved!

RCL circuits

- LC circuits don't belong to this world:
- R is never exactly 0 !
- So let's concentrate on RCLs
- Start with a charged C
- Intuitively:
- LC \rightarrow oscillatory part: sin and cos solution
- $\mathrm{R} \rightarrow$ dissipative part: exponential damping
- Rigorous solution:

Use Kirchoff: $\frac{Q}{C}-I R-L \frac{d I}{d t}=0$
Since $I(\mathrm{t})=-\frac{\mathrm{dQ}}{\mathrm{dt}} \Rightarrow \quad \frac{d^{2} Q}{d t^{2}}+\frac{\mathrm{RdQ}}{\mathrm{L} d t}+\frac{1}{L C} Q=0$
G. Sciolla - MIT
8.022 - Lecture 16

RCL circuits: solution

- How to solve this equation? $\frac{d^{2} Q}{d t^{2}}+\frac{R}{L} \frac{d Q}{d t}+\frac{1}{L C} Q=0$
- Educated guess!
- Intuition tells us that the solution must have an oscillatory term and a damping term
- Strategy \#1: exponential * sin/cos functions:

$$
Q(t)=e^{-t / \tau}\left(A \cos \omega_{0} t+B \sin \omega_{0} t\right)
$$

Very heavy on algebra!!!

- Strategy \#2: complex exponentials
- Idea: the solution is the real part of a complex solution

$$
\tilde{Q}(t)=A e^{i \phi_{0}} e^{i \alpha t} \Rightarrow Q(t)=\operatorname{Re}[\tilde{Q}(t)]
$$

Much easier algebra!!!
NB: a can be complex!
G. Sciolla - MIT

Complex number notation

- Complex number: number with both a real and an imaginary part
$\begin{array}{ll}z=x+i y \quad \text { with } \mathrm{i}=\sqrt{-1} \\ \text { Complex plane representation } \mathrm{z}=(\mathrm{x}, \mathrm{y}) \rightarrow & \mathrm{y} \uparrow \quad \mathrm{x} \quad \mathrm{z=x+iy} \\ \text { Another useful representation }\end{array}$
Set magnitude $\mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}$ and phase $\theta=\operatorname{arctg} \frac{\mathrm{y}}{\mathrm{x}} \Rightarrow z=r(\cos \theta+i \sin \theta)$
- Given Euler's relation: $\quad e^{i \theta}=\cos \theta+i \sin \theta$
- Prove it using Maclaurin expansion (see handout)

$$
\Rightarrow \quad z=r e^{i \theta} \quad \text { (Phasor representation) }
$$

RCL circuits: solution (cont)

Plug expected solution $\tilde{Q}(t)=e^{i \phi} e^{i \alpha t}$ into the differential equation $\frac{d^{2} \tilde{Q}}{d t^{2}}+\frac{R}{L} \frac{d \tilde{Q}}{d t}+\frac{1}{L C} \tilde{Q}=0$
$\frac{d \tilde{Q}}{d t}=i \alpha Q ; \quad \frac{d^{2} \tilde{Q}}{d t^{2}}=-\alpha^{2} \tilde{Q} \Rightarrow \tilde{Q}\left(-\alpha^{2}+i \alpha \frac{R}{L}+\frac{1}{L C}\right)=0$
Simple quadratic equation: $-\alpha^{2}+i \alpha \frac{R}{L}+\frac{1}{L C}=0 \Rightarrow \alpha=i \frac{R}{2 L} \pm \sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}$
This gives us 2 complex solutions for $\tilde{Q}(t):\left\{\begin{array}{l}\tilde{Q}_{+}(t)=A e^{i \phi_{0}} e^{-\frac{R}{2 L} t} e^{i \sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}} \\ \tilde{Q}_{-}(t)=A e^{i \phi_{0}} e^{-\frac{R}{2 L} t} e^{-i \sqrt{\frac{1}{L C} \frac{-2^{2}}{4 L^{2}}} t}\end{array}\right.$
$\Rightarrow \underset{\text { G. Scilla a - MIT }}{\text { real }} \mathbf{Q}(t)=A e^{-\frac{R}{2 L} t} \cos \left(\pm \omega t+\phi_{0}\right)$ with $\omega=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}}$
G. Sciolla - MIT

The weak damping limit

Weak damping limit: small $R \rightarrow$ the damping is small \rightarrow several oscillations occur before amplitude start decreasing in sizable way
$I(t)=-\frac{d Q}{d t}=Q_{0} e^{-\frac{R}{2 L} t}\left[\omega \sin \left(\omega t+\phi_{0}\right)+\frac{R}{2 L} \cos \left(\omega t+\phi_{0}\right)\right]$
When $\omega \gg R /(2 L)$ (damping limit), the second term can be ignored and
$I(t) \sim A e^{-\frac{R}{2 L} t} \omega \sin (\omega t)$ with $\omega=\sqrt{\frac{1}{L C}-\frac{R^{2}}{4 L^{2}}} \sim \frac{1}{\sqrt{L C}}=\omega_{0}$
\Rightarrow final solution for "weak damping": $\left\{\begin{array}{l}Q(t) \sim Q_{0} e^{-\frac{R}{2 L} t} \cos \left(\omega_{0} t+\phi_{0}\right) \\ I(t) \sim \omega_{0} Q_{0} e^{-\frac{R}{2 L} t} \sin \left(\omega_{0} t+\phi_{0}\right) \\ \omega_{0}=\frac{1}{\sqrt{L C}}\end{array}\right.$

RCL in weak damping limit

- Initial conditions: $\mathrm{Q}(0)=\mathrm{Q}_{0}=\mathrm{A} \cos \left(\phi_{0}\right)$ and $\mathrm{I}(0)=0=\mathrm{A} \omega_{0} \sin \phi_{0} \Rightarrow A=Q_{0} ; \phi_{0}=0$

$$
\Rightarrow\left\{\begin{array}{l}
Q(t) \sim Q_{0} e^{-\frac{R}{2 L} t} \cos \left(\omega_{0} t\right) \\
I(t) \sim \omega_{0} Q_{0} e^{-\frac{R}{2 L} t} \sin \left(\omega_{0} t\right)
\end{array}\right.
$$

- Graphical representation of solution:

Demo L2: Dumped RCL
G. Sciolla - MIT
8.022 - Lecture 16

Summary and outlook

- Today:

What happens when we put L in circuits?

- RL circuits: exponential solutions
- LC circuits: oscillatory solution
- RCL circuits: damped oscillation

- Next Tuesday:
- Quiz \# 2: good luck!!!

