
Formula Sheet Final Exam
Springs and masses:

m
d2

dt2
x(t) + b

d

dt
x(t) + kx(t) = F (t)

More general differential equation with harmonic driving force:

d2

dt2
x(t) + Γ

d

dt
x(t) + ω2

0x(t) =
F0

m
cos (ωdt)

Steady state solutions:
xs(t) = A cos (ωdt− δ)

where

A =
F0

m√
(ω2

0 − ω2
d)

2 + ω2
dΓ

2

and

tan δ =
Γωd

ω2
0 − ω2

d

General solutions:
For Γ = 0 (undamped system):

x(t) = R cos (ω0t+ θ) + xs(t)

where R and θ are unknown coefficients.
For Γ < 2ω0 (under damped system):

x(t) = Re−
Γ
2
t cos

(√
ω2
0 −

Γ2

4
t+ θ

)
+ xs(t)

where R and θ are unknown coefficients.
For Γ = 2ω0 (critically damped system):

x(t) = (R1 +R2t)e
−Γ

2
t + xs(t)

where R1 and R2 are unknown coefficients.
For Γ > 2ω0 (over damped system):

x(t) = R1e
−
(

Γ
2
+

√
Γ2

4
−ω2

0

)
t
+R2e

−
(

Γ
2
−
√

Γ2

4
−ω2

0

)
t
+ xs(t)

where R1 and R2 are unknown coefficients.
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Coupled oscillators

Fj = −
n∑
k=1

Kjkxk

Examples for n = 2

X (t) =

[
x1(t)
x2(t)

]

K =

[
K11 K12

K21 K22

]

M =

[
m1 0
0 m2

]
Matrix equation of motion, matrices M, K, I are n× n, vectors X , Z are n× 1.

d2

dt2
X (t) = −M−1KX (t)

Z(t) = Ae−iωt

(M−1K − ω2I)A = 0

To obtain the frequencies of normal modes solve:

det(M−1K − ω2I) = 0

For n = 2

det

[
M11 M12

M21 M22

]
= M11M22 −M12M21

If the system is driven by force one can find the response amplitudes C(ωd)

F(t) = F0e
−iωdt

W(t) = C(ωd)e−iωdt

C(ωd) =

[
c1(ωd)
c2(ωd)

]
(M−1K − ω2

dI)C(ωd) = F0
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solving the equation above one can find the response amplitudies for the first (c1(ωd)) and
second (c2(ωd)) objects in the system.

Reflection symmetry matrix:

S =

[
0 −1
−1 0

]
Eigenvalues (β) and eigenvectors (A) of this 2× 2 S matrix:

(1) β = −1, A =

[
1
1

]
(2) β = 1, A =

[
1
−1

]
1D infinite coupled system which satisfy space translation symmetry:
Given a eigenvalue β, the corresponding eigenvector is

Aj = βjA0

where
Aj(A0)

is the normal amplitude of jth(0th) object in the system.
Consider an one dimentional system which consists infinite number of masses coupled by springs,

β can be written as β = eika where k is the wave number and a is the distance between the masses.
Kirchoff’s Laws (be careful about the signs!)

Node :
∑
i

Ii = 0 Loop :
∑
i

∆Vi = 0

Capacitors : ∆V =
Q

C
Inductors : ∆V = −LdI

dt
Current : I =

dQ

dt

Trigonometric equalities:

sin(a± b) = sin(a) cos(b)± cos(a) sin(b)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

sin(a) + sin(b) = 2 sin

(
a+ b

2

)
cos

(
a− b

2

)
sin(a)− sin(b) = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)
cos(a) + cos(b) = 2 cos

(
a+ b

2

)
cos

(
a− b

2

)
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cos(a)− cos(b) = −2 sin

(
a+ b

2

)
sin

(
a− b

2

)
eiθ = cos θ + i sin θ

Some useful integrals involving sin and cos:

2

L

∫ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
1, if n = m.

0, otherwise.

2

L

∫ L

0

cos
(nπx
L

)
cos
(mπx

L

)
dx =

{
1, if n = m.

0, otherwise.

2

L

∫ L

0

cos
(nπx
L

)
sin
(mπx

L

)
dx = 0∫

x sin(x)dx = sin(x)− x cos(x) + C∫
x cos(x)dx = cos(x) + x sin(x) + C

4



Maxwell Equations in vacuum

∂Ey
∂x
− ∂Ex

∂y
= −∂Bz

∂t
;
∂Ez
∂y
− ∂Ey

∂z
= −∂Bx

∂t
;
∂Ex
∂z
− ∂Ez

∂x
= −∂By

∂t

∂By

∂x
− ∂Bx

∂y
= µ0ε0

∂Ez
∂t

;
∂Bz

∂y
− ∂By

∂z
= µ0ε0

∂Ex
∂t

;
∂Bx

∂z
− ∂Bz

∂x
= µ0ε0

∂Ey
∂t

∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= 0 ;
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z
= 0

Lorentz force

~F = q( ~E + ~v × ~B)

Wave equation for EM fields in vacuum

∂2Ei
∂x2

+
∂2Ei
∂y2

+
∂2Ei
∂z2

=
1

c2
∂2Ei
∂t2

where i = x, y, z

∂2Bi

∂x2
+
∂2Bi

∂y2
+
∂2Bi

∂z2
=

1

c2
∂2Bi

∂t2
where i = x, y, z

For EM plane waves in vacuum:

~B(~r, t) =
1

c
k̂ × ~E(~r, t)

~E(~r, t) = c ~B(~r, t)× k̂

Linear energy density in a string with tension T and mass density ρL

dK

dx
=

1

2
ρL

(
∂y

∂t

)2
dU

dx
=

1

2
T

(
∂y

∂x

)2

EM energy per unit volume and Poynting vector:

UE =
1

2
ε0 ~E

2 UB =
1

2µ0

~B2 ~S =
1

µ0

~E × ~B

Transmission and reflection

R =
Z1 − Z2

Z1 + Z2

, T =
2Z1

Z1 + Z2

Phase velocity and impedance:
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v =

√
T

ρL
, Z =

√
TρL (string)

v =

√
1

LC
, Z =

√
L

C
(transmission line)

Snell’s law

n1 sin θ1 = n2 sin θ2

Fourier transform

f(t) =

∫ ∞
−∞

dωC(ω)e−iωt

C(ω) =
1

2π

∫ ∞
−∞

dtf(t)eiωt

Delta function
1

2π

∫ ∞
−∞

ei(ω−ω
′)tdt = δ(ω − ω′)∫ ∞

−∞
δ(x)dx = 1∫ ∞

−∞
δ(x− a)f(x)dx = f(a)

Electric and magnetic field from an accelerated charge:

~E(~r, t) = −q ~a⊥(t− |r|/c)
4πε0rc2

~E(~r, t) =
r̂ × ~B

c

Total power emitted by the accelerated charge:

P (t) =
q2a2(t− r/c)

6πε0c3

Interference of two sources with amplitudes A1 and A2 with a relative phase difference δ:

< I >∝ (A2
1 + A2

2 + 2A1A2 cos δ)

Interference of N fields of equal amplitude with phases δm+1 − δm = δ:
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< I >=< I0 >

[
sin(Nδ/2)

sin(δ/2)

]2
Single slit diffraction where β is the phase difference between rays coming from edges and the

center of the slit:

< I >=< I0 >

[
sin(β)

β

]2
Rayleigh’s criterion for resolution: Diffraction peak of one image falls on te first minimum of

the diffraction pattern of the second image.
Electric field transmission and reflection ratios, magnitude and sign, for radiation incident

normally on an interface between lossless dielectrics with indices of refraction n1 and n2.

Et
Ei

=
2n1

n1 + n2

Er
Ei

=
n1 − n2

n1 + n2

Schrodinger’s Equation

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x, t)

]
ψ(x, t)

where V is the potential energy, m is the mass of the particle and ψ is the wave function.
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