
8.03 Practice Final Exam 2 Solution

Problem 1

1.1 (3 points)

The potential energy

U(x) = A(1− cos(αx)) (1)

The minimum is at the points

x = 2nπ , n ∈ Z (2)

For example we consider x = 0,

d2U

dx2

∣∣∣
0

= Aα2 cos(αx)|0 = Aα2 (3)

This is equivalent to the parameter k in the simple harmonic motion of a spring: U = 1
2kx

2.

Hence we get the period

T = 2π
1

ω
= 2π

√
m

k
= 2π

√
m

Aα2
(4)

1.2 (3 points)

The transient behaviour of a driven oscillation system is described by the sum of the steady

state motion and the undriven decaying motion under damping.

1



The period of steady state motion is indicated by the red line, which is much longer than

the period of undriven motion (the blue line). Also the overall shape of the transient motion is

in the form of underdamped decaying motion. Hence the answer is b,f.

1.3 (3 points)

The relation between bandwidth ∆f and time resolution ∆t is

∆t∆f ∼ 1 (5)

Hence the band width

∆f ∼ 109Hz (6)

1.4 (3 points)

No matter how weak the electron source is, there’s always interference pattern on the screen

after a long time. The answer is a,d.

1.5 (3 points)

The 2d wave equation is
∂2ψ

∂t2
= v2

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
(7)

The lowest mode that respects the given boundary condition is

ψ1,1(x, y, t) ∼ sin
(πx
L

)
sin
(πy
L

)
cos(ωt) (8)

Insert it into the wave equation, we get

ω =
√

2
vπ

L
(9)

Problem 2(15 points)

a) (5 points)

y1 y2

T T

2L L

The equation of motion for m1 is

mÿ1 = − T

2L
y1 −

T

L
(y1 − y2) = −3T

2L
y1 +

T

L
y2 (10)

Similarly the equation of motion for m1 is

mÿ2 = − T

2L
y2 −

T

L
(y2 − y1) = −3T

2L
y2 +

T

L
y1 (11)

Hence the matrix elements for K is

K11 = K22 =
3T

2L
, K12 = K21 = −T

L
(12)
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And the matrix M−1K is

M−1K =

(
3T
2mL − T

mL

− T
mL

3T
2mL

)
(13)

b) (5 points)

The system is symmetric under the horizontal reflection about the center point, or the

interchange y1 ↔ y2. The only solutions that have this symmetry are y1(t) = y2(t) and

y1(t) = −y2(t). They give rise to eigenvectors

V+ =

(
1

1

)
, V− =

(
1

−1

)
. (14)

Plug those eigenvectors into the matrix equation

M−1KV = ω2V (15)

We get the corresponding angular frequencies for V±:

ω+ =

√
T

2mL
, ω− =

√
5T

2mL
(16)

c) (5 points)

The most general motion in terms of those normal modes is:(
y1

y2

)
= A+

(
1

1

)
cos(ω+t+ ϕ+) +A−

(
1

−1

)
cos(ω−t+ ϕ−) (17)

where A+ and A− are two coefficients fixed by the initial conditions.

From the information of initial positions and velocities, we have equations:(
0

A

)
= A+

(
1

1

)
cosϕ+ +A−

(
1

−1

)
cosϕ− (18)

(
0

0

)
= −A+

(
1

1

)
sinϕ+ −A−

(
1

−1

)
sinϕ− (19)

From the second equation we get ϕ+ = ϕ− = 0, and from the first equation we can solve

A+ =
A

2
, A− = −A

2
(20)

The motion for m1 is then

y1(t) =
A

2
(cos(ω+t)− cos(ω−t)) (21)

Problem 3(20 points)

a) (5 points)

At x = 0, the pressure is the same as the atmosphere pressure P0, the pressure disturbance

P (0, t) = 0. At x = L, the displacement of air molecules is zero, then

∂P

∂x
(L, t) = 0 (22)
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b) (5 points)

From the boundary condition at x = 0 we know the normal modes are in form of

P (x, t) ∼ sin(kx) (23)

Then from the boundary condition at x = L:

k cos(kL) = 0, (24)

we derive

k =

(
n+

1

2

)
π

L
, n = 0, 1, 2, . . . (25)

The Fourier expansion of P (x, t) is then

P (x, t) =

∞∑
n=0

An sin

((
n+

1

2

)
π

L
x

)
cos

((
n+

1

2

)
vπ

L
t

)
(26)

(The phases in each term are all zero because the initial “velocity” ∂P
∂t = 0)

c) (5 points)

The Fourier coefficients can be solved by evaluating the integration

An =
2

L

∫ L

0
f(x) sin

((
n+

1

2

)
π

L
x

)
dx (27)

f(x) is the initial shape given in the problem.

An =
2(P1 − P0)

L

∫ 2L/3

L/3
sin

((
n+

1

2

)
π

L
x

)
dx

= − 2(P1 − P0)(
n+ 1

2

)
π

[cos

((
n+

1

2

)
2π

3

)
− cos

((
n+

1

2

)
π

3

)
]

(28)

d) (5 points)

At time t = 2L
v , the arguments (

n+
1

2

)
vπ

L
t = 2πn+ π (29)

Hence all the cos
((
n+ 1

2

)
vπ
L t
)

in the expansion of P (x, t) equal to −1. The configuration

(pressure disturbance) is then

0
P0-P1
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Problem 4(15 points)

a) (3 points)

The average acceleration

〈~a〉 =
~v2 − ~v1

∆t
(30)

where ~v1 = ωx̂, ~v2 = ω cos ∆α · x̂−ω sin ∆α · ŷ are the initial and final velocity. Since ∆α� 1,

cos ∆α− 1 is a second order infinitesimal quantity, which can be ignored comparing to sin ∆α.

Then

~v2 − ~v1 = −ω∆α · ŷ (31)

〈~a〉 = −ω∆α

∆t
· ŷ (32)

b) (3 points)

The electric field generated by this acceleration is

~E(~r, t) = −q~a⊥(t− |r|/c)
4πε0rc2

(33)

where ~a⊥(t − |r|/c) is the acceleration projected to the direction transverse to ~r. Hence the

direction of electric field is shown below:

c) d) (2 points for each)

The direction perpendicular to the direction of acceleration has the most intense radiation.

The direction along or opposite the direction of acceleration has least radiation (no radiation):

least intense

least intense

most intense most intense

e) (2 points)

From (33) we know that the electric field scales like ~E ∼ 1
r . Hence the amplitude at P2 will

be 1
2 of the amplitude at P1.
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f) (3 points)

The total radiation power is

P (t) =
q2a2(t− |r|/c)

6πε0c3
(34)

Hence the total energy radiated by charge is

E = P∆t = ∆t · q2ω2∆α2

6πε0c3(∆t)2
=
q2ω2∆α2

6πε0c3∆t
(35)

Problem 5(15 points)

a) (5 points)

For unpolarized light, the intensity after passing through a linear polarizer is IA = 1
2I0. Its

polarization after passing through A is along x̂ direction.

b) (5 points)

After the light passed through B, the polarization vector is projected to the easy direction

of B, hence the final intensity is

IB = IA cos2 θ =
1

2
I0 cos2 θ (36)

c) (5 points)

After the light passed through C, the polarization vector is projected from the easy direction

of B to the easy direction of C (ŷ-direction), hence the final intensity is

IC = IB sin2 θ =
1

2
I0 cos2 θ sin2 θ =

1

8
I0 sin2(2θ) (37)
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Problem 6(20 points)

a) (4 points)

Since the slits are very narrow, the intensity is just the 4-slits interference intensity:

I = I0

(
sin2(2δ)

sin2 δ
2

)
, δ = 2π

d

λ
sinψ (38)

b) (4 points)

The principal maximas are at δ = 2πn or sinψ = nλd . The minimas are at δ = mπ
2 , where

4 - m.

c) (4 points)

When the two middle slits are closed, the system is just a two slits interference with slit

distance 3d. Hence

I = I0

(
sin2 δ′

sin2 δ′

2

)
, δ′ = 6π

d

λ
sinψ (39)

d) (4 points)

The new maximas are at

sinψ = n
λ

3d
(n ∈ Z) (40)

and the new minimas are at

sinψ =

(
n+

1

2

)
λ

3d
(n ∈ Z) (41)

The principal maximas

sinψ = n
λ

d
(n ∈ Z) (42)

7



are at same positions.

The intensity of principal maximas decreased from 16I0 to 4I0.

e) (4 points)

When the width of a single slit cannot be ignored, the intensity

I = I0

(
sin2(2δ)

sin2 δ
2

)
sin2 β

β2
, β = π

D

λ
sinψ (43)

The zero points of diffraction factor sin2 β
β2 are at

sinψ = n
λ

D
, n = 1, 2, 3, . . . (44)

The condition which principal maxima of the interference pattern overlaps with the diffraction

zero point is then

n
λ

D
=
mλ

d
=
mλ

5D
(45)

So the lowest interference order for this to happen is m = 5.

8



 

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





