# Massachusetts Institute of Technology 

Physics 8.03 Fall 2016
Exam 1 Formula Sheet

Springs and masses:

$$
m \frac{d^{2}}{d t^{2}} x(t)+b \frac{d}{d t} x(t)+k x(t)=F(t)
$$

More general differential equation with harmonic driving force:

$$
\frac{d^{2}}{d t^{2}} x(t)+\Gamma \frac{d}{d t} x(t)+\omega_{0}^{2} x(t)=\frac{F_{0}}{m} \cos \left(\omega_{d} t\right)
$$

Steady state solutions:

$$
x_{s}(t)=A \cos \left(\omega_{d} t-\delta\right)
$$

where

$$
A=\frac{\frac{F_{0}}{m}}{\sqrt{\left(\omega_{0}^{2}-\omega_{d}^{2}\right)^{2}+\omega_{d}^{2} \Gamma^{2}}}
$$

and

$$
\tan \delta=\frac{\Gamma \omega_{d}}{\omega_{0}^{2}-\omega_{d}^{2}}
$$

General solutions:
For $\Gamma=0$ (undamped system):

$$
x(t)=R \cos \left(\omega_{0} t+\theta\right)+x_{s}(t)
$$

where $R$ and $\theta$ are unknown coefficients.
For $\Gamma<2 \omega_{0}$ (under damped system):

$$
x(t)=R e^{-\frac{\Gamma}{2} t} \cos \left(\sqrt{\omega_{0}^{2}-\frac{\Gamma^{2}}{4}} t+\theta\right)+x_{s}(t)
$$

where $R$ and $\theta$ are unknown coefficients.
For $\Gamma=2 \omega_{0}$ (critically damped system):

$$
x(t)=\left(R_{1}+R_{2} t\right) e^{-\frac{\Gamma}{2} t}+x_{s}(t)
$$

where $R_{1}$ and $R_{2}$ are unknown coefficients.
For $\Gamma>2 \omega_{0}$ (over damped system):

$$
x(t)=R_{1} e^{-\left(\frac{\Gamma}{2}+\sqrt{\frac{\Gamma^{2}}{4}-\omega_{0}^{2}}\right) t}+R_{2} e^{-\left(\frac{\Gamma}{2}-\sqrt{\frac{\Gamma^{2}}{4}-\omega_{0}^{2}}\right) t}+x_{s}(t)
$$

where $R_{1}$ and $R_{2}$ are unknown coefficients.
Coupled oscillators

$$
F_{j}=-\sum_{k=1}^{n} K_{j k} x_{k}
$$

Examples for $n=2$

$$
\begin{aligned}
& \mathcal{X}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] \\
& \mathcal{K}=\left[\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right] \\
& \mathcal{M}=\left[\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right]
\end{aligned}
$$

Matrix equation of motion, matrices $\mathcal{M}, \mathcal{K}, \mathcal{I}$ are $n \times n$, vectors $\mathcal{X}, \mathcal{Z}$ are $n \times 1$.

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} \mathcal{X}(t)=-\mathcal{M}^{-1} \mathcal{K} \mathcal{X}(t) \\
\mathcal{Z}(t)=\mathcal{A} e^{-i \omega t} \\
\left(\mathcal{M}^{-1} \mathcal{K}-\omega^{2} \mathcal{I}\right) \mathcal{A}=0
\end{gathered}
$$

To obtain the frequencies of normal modes solve:

$$
\operatorname{det}\left(\mathcal{M}^{-1} \mathcal{K}-\omega^{2} \mathcal{I}\right)=0
$$

For $n=2$

$$
\operatorname{det}\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right]=M_{11} M_{22}-M_{12} M_{21}
$$

If the system is driven by force one can find the response amplitudes $\mathcal{C}\left(\omega_{d}\right)$

$$
\begin{gathered}
\mathcal{F}(t)=\mathcal{F}_{0} e^{-i \omega_{d} t} \\
\mathcal{W}(t)=\mathcal{C}\left(\omega_{d}\right) e^{-i \omega_{d} t} \\
\mathcal{C}\left(\omega_{d}\right)=\left[\begin{array}{l}
c_{1}\left(\omega_{d}\right) \\
c_{2}\left(\omega_{d}\right)
\end{array}\right] \\
\left(\mathcal{M}^{-1} \mathcal{K}-\omega_{d}^{2} \mathcal{I}\right) \mathcal{C}\left(\omega_{d}\right)=\mathcal{F}_{0}
\end{gathered}
$$

solving the equation above one can find the response amplitudies for the first $\left(c_{1}\left(\omega_{d}\right)\right)$ and second $\left(c_{2}\left(\omega_{d}\right)\right)$ objects in the system.

Reflection symmetry matrix:

$$
\mathcal{S}=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

Eigenvalues $(\beta)$ and eigenvectors $(\mathcal{A})$ of this $2 \times 2 \mathcal{S}$ matrix:
(1) $\beta=-1, \mathcal{A}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(2) $\beta=1, \mathcal{A}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

1D infinite coupled system which satisfy space translation symmetry:
Given a eigenvalue $\beta$, the corresponding eigenvector is

$$
A_{j}=\beta^{j} A_{0}
$$

where

$$
A_{j}\left(A_{0}\right)
$$

is the normal amplitude of $j$ th $(0 \mathrm{th})$ object in the system.
Consider an one dimentional system which consists infinite number of masses coupled by springs, $\beta$ can be written as $\beta=e^{i k a}$ where $k$ is the wave number and $a$ is the distance between the masses.

Kirchoff's Laws (be careful about the signs!)

$$
\begin{gathered}
\text { Node : } \sum_{i} I_{i}=0 \text { Loop : } \sum_{i} \Delta V_{i}=0 \\
\text { Capacitors : } \Delta V=\frac{Q}{C} \quad \text { Inductors : } \Delta V=-L \frac{d I}{d t} \quad \text { Current : } I=\frac{d Q}{d t}
\end{gathered}
$$

MIT OpenCourseWare
https://ocw.mit.edu

### 8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

