
8.03 Lecture 10

Last time we discussed the wave equation:
∂2ψ

∂t2
= v2∂

2ψ

∂x2

Normal modes: standing waves!
(1)

ψ(x, t) =
∞∑
m=1

Am sin(kmx+ αm) sin(ωmt+ βm)

(2) There is a special kind of solution:

ψ(x, t) = f(x− vpt)

for any functional form of f . Let τ ≡ x− vpt

(i) ∂f

∂x
= ∂f

∂τ

∂τ

∂x
= ∂f

∂τ
· 1 = f ′(τ)

∂2f

∂x2 = f ′′(τ)

(ii) ∂f

∂t
= ∂f

∂τ

∂τ

∂t
= −vp

∂f

∂t
= −vpf ′(τ)

∂2f

∂t2
= v2

pf
′′(τ)

From (i) and (ii):
∂2f

∂t2
= v2

p

∂2f

∂x2

We’ve learned that f(τ) satisfies the wave equation! You can also show that any function f(kx±ωt)
gives the same result, given ω = vpk
In which direction does it move in?

f(τ) is the shape of the progressing wave

f(x− vt): moving to the right!
f(x+ vt): moving to the left!



What is moving? The particles in the spring only move up and down!

This works for any shape! This is not obvious, but it is is what is happening.
Wave equations are linear: this means that a linear combination of solutions is a solution.

What will happen? will they
cancel? pass through each
other or change shape?

Why do they do this? How
does the string “remember”
what happened?

(3) is different from a stationary string: instantaneous velocity in the region where cancellation
happens is not zero! I.e. the string is ready to produce the two outgoing progressing waves!
Energy stored in the string:
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(1) Kinetic energy 1
2mv

2

⇒
∫
ρL
2 dx

(
∂ψ

∂t

)2

Because dm = ρLdx (the differential mass is related to a infinitesimal length element by the density)

(2) Potential energy: dW = F · ds

F · ds⇒T
(√

dx2 + dψ2 − dx
)

= T

dx
√

1 +
(
∂ψ

∂x

)2
− dx


We have a small vibration so

(
∂ψ
∂x

)
is small

= T

(
dx+ 1

2

(
∂ψ

∂x

)2
dx− dx

)
∫
T

2

(
∂ψ

∂x

)2
dx

Summary: Potential energy:
∫ T

2

(
∂ψ
∂x

)2
dx

Kinetic energy:
∫ ρL

2 dx
(
∂ψ
∂t

)2

Example:
ψ(x, t) = 1

1 + (x− 3t)4
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We can write ψ as f(x− 3t). The velocity is 3 and it is traveling to the right. Another way to find
the velocity is by using the wave equation:

v =

√
∂2ψ

∂t2
/
∂2ψ

∂x2

Finally, if you start with a stationary shape:

What will happen at t = T? Can we predict? (Define v ≡
√
T/ρL)

(1) Brute force:
Decompose it into ∞ number of normal mode standing waves. Evolve ∞ of those waves
(2) Use g = f(x+ vt) + f(x− vt). Velocity : ∂g

∂t = vf ′ − vf ′
*Any stationary shape can be decomposed into two progressing waves!!

Similarly: normal modes can be decomposed into two traveling sine waves.
A few examples with string: Now we are connecting two systems with different densities, ρL and
4ρL
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Assuming that the tension, T , is uniform.

v1 =
√
T

ρL
v2 =

√
T

4ρL
= 1

2v1

Suppose we have an incident wave with amplitude A

There will be a reflected wave and transmitted wave.
Boundary conditions:

1. The string is continuous: yL(0−) = yR(0+) (⇒ ω has to be the same).

2. The slope is continuous:
∂yL
∂x

∣∣∣∣
x=0

= ∂yR
∂x

∣∣∣∣
x=0

If the slope were not continuous there would be a huge acceleration at the junction!

yL(x, t) = fi(−k1x+ ωt) + fr(k1x+ ωt)
yR(x, t) = ft(−k2x+ ωt)
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Where we have the incident, reflected, and transmitted waves.

k1 = ω

v1
k2 = ω

v2

1. fi(ωt) + fr(ωt) = ft(ωt)

2. −k1f
′
i(ωt) + k1f

′
r(ωt) = −k2f

′
t(ωt)

integration on both sides, replace k by v
⇒ − v2fi(ωt) + v2fr(ωt) = −v1ft(ωt)

From (1.) and (2.):

fr(ωt) = v2 − v1
v2 + v1

fi(ωt) R = v2 − v1
v2 + v1

ft(ωt) = 2v2
v1 + v2

fi(ωt) T = 2v2
v1 + v2

In this example:
v2 = v1

2 ⇒ R = −1
3 T = 2

3
The wave length changed, but the frequency did not. Two things we have learned:

1. The amplitude of the transmitted and reflected wave is determined by the properties of the
two systems. “Impedance” in this case is Z = T/V

2. Wavelength changes: k1 ∝ v−1
1

Consider two extreme cases:
The first is the string attached to a wall. In a sense, the “ρL” of the wall is very big, infinite in
fact. Therefore v2 → 0 and R = −1 T = 0. The amplitude changes sign but not magnitude, and
there is no transmitted wave.
In the second case, there is air on the other side. The “ρL” of air is 0, therefore v2 → ∞ and
R = 1 T = 2
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More examples:
Example 2 (driven massless ring):
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Boundary conditions:

1. y
∣∣
x=0 = P (t) a driving force.

2. Tension force cancels the normal force: ⇒ − T ∂y
∂x = 0

Example 3:

1. y
∣∣
x=0 = P (t)

2. −T ∂y
∂x − b

∂y
∂t = 0 (Where sin θ ≈ ∂y

∂x)

8



 

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





