8.03 Lecture 3

Summary: solution of $\ddot{\theta}+\Gamma \dot{\theta}+\omega_{0}^{2} \theta=0$
(0): $\Gamma=0$ No damping:

$$
\theta(t)=A \cos \left(\omega_{0} t+\alpha\right)
$$

(1): $\omega_{0}^{2}>\frac{\Gamma^{2}}{4}$ Underdamped Oscillator:

$$
\theta(t)=A e^{-\Gamma t / 2} \cos (\omega t+\alpha) \text { where } \omega=\sqrt{\omega_{0}^{2}-\frac{\Gamma^{2}}{4}}
$$

(2): $\omega_{0}^{2}=\frac{\Gamma^{2}}{4}$ Critically damped oscillator:

$$
\theta(t)=(A+B t) e^{-\Gamma t / 2}
$$

(3): $\omega_{0}^{2}<\frac{\Gamma^{2}}{4}$ Overdamped Oscillator:

$$
\theta(t)=A e^{-(\Gamma / 2+\beta) t}+B e^{-(\Gamma / 2-\beta) t} \text { where } \beta=\sqrt{\frac{\Gamma^{2}}{4}-\omega_{0}^{2}}
$$

Continue from lecture 2:
Now we are interested in giving a driving force to this rod:

Assume that the force produces a torque:

$$
\tau_{D R I V E}=d_{0} \cos \omega_{d} t
$$

Total torque:

$$
\tau(t)=\tau_{g}(t)+\tau_{D R A G}(t)+\tau_{D R I V E}(t)
$$

Equation of motion: $\ddot{\theta}+\Gamma \dot{\theta}+\omega_{0}^{2} \theta=\frac{d_{0}}{I} \cos \omega_{d} t$
Where, from last lecture, we have defined:

$$
\Gamma \equiv \frac{3 b}{m l^{2}} \quad \omega_{0} \equiv \sqrt{\frac{3 g}{2 l}}
$$

Where Γ is the size of the drag force and ω_{0} is the natural angular frequency (i.e., without drive). Also, define $f_{0} \equiv \frac{d_{0}}{I}$. Now our equation of motion reads:

$$
\ddot{\theta}+\Gamma \dot{\theta}+\omega_{0}^{2} \theta=f_{0} \cos \omega_{d} t
$$

We would like to construct something to "cancel" $\cos \omega_{d} t$. Idea: use complex notation:

$$
\ddot{z}+\Gamma \dot{z}+\omega_{0}^{2} z=f_{0} e^{i \omega_{d} t}
$$

Guess:

$$
z(t)=A e^{i\left(\omega_{d} t-\delta\right)}
$$

where the δ is designed to cancel $e^{i \omega_{d} t}$. It takes some time for the system to "feel" the driving torque. Taking our derivatives gives us:

$$
\begin{aligned}
\dot{z}(t) & =i \omega_{d} z \\
\ddot{z}(t) & =-\omega_{d}^{2} z
\end{aligned}
$$

Insert these results into the equation of motion:

$$
\begin{aligned}
\left(-\omega_{d}^{2}+i \omega_{d} \Gamma+\omega_{0}^{2}\right) z(t) & =f_{0} e^{i \omega_{d} t} \\
\left(-\omega_{d}^{2}+i \omega_{d} \Gamma+\omega_{0}^{2}\right) A e^{i\left(\omega_{d} t-\delta\right)} & =f_{0} e^{i \omega_{d} t} \\
\left(-\omega_{d}^{2}+i \omega_{d} \Gamma+\omega_{0}^{2}\right) A & =f_{0} e^{i \delta} \\
& =f_{0}(\cos \delta+i \sin \delta)
\end{aligned}
$$

Since this is a complex equation, we can solve for A and δ
Real part: $\left(\omega_{0}^{2}-\omega_{d}^{2}\right) A=f_{0} \cos \delta$
Imaginary part: $\omega_{d} \Gamma A=f_{0} \sin \delta$
Squaring both of these equations and adding them together yields:

$$
\begin{aligned}
& A^{2}\left[\left(\omega_{0}^{2}-\omega_{d}^{2}\right)+\omega_{d}^{2} \Gamma^{2}\right]=f_{0}^{2} \\
& A\left(\omega_{d}\right)=\frac{f_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega_{d}^{2}\right)+\omega_{d}^{2} \Gamma^{2}}}
\end{aligned}
$$

Dividing the imaginary part by the real part yields:

$$
\begin{gather*}
\tan \delta=\frac{\Gamma \omega_{d}}{\omega_{0}^{2}-\omega_{d}^{2}} \\
\Rightarrow \theta(t)=\operatorname{Re}[z(t)]=A\left(\omega_{d}\right) \cos \left(\omega_{d} t-\delta\left(\omega_{d}\right)\right) \tag{1}
\end{gather*}
$$

Where both $A\left(\omega_{d}\right)$ and $\delta\left(\omega_{d}\right)$ are functions of ω_{d}.
No free parameter?! Actually, this is the a particular solution. The full solution (if we prepare the system in the "underdamped" mode) is:

$$
\theta(t)=A\left(\omega_{d}\right) \cos \left(\omega_{d} t-\delta\right)+B e^{-\Gamma t / 2} \cos (\omega t+\alpha)
$$

Where the left side with amplitude A is the steady state solution and the right side with amplitude B will die out as $t \rightarrow \infty$.

You may be confused with so many different ω 's!! To clarify:
ω_{0} is the "natural angular frequency." In our example with the rod, $\omega_{0}=\sqrt{3 g / 2 l}$
ω : this frequency is lower if there is a drag force. It is defined by the equation $\omega=\sqrt{\omega_{0}^{2}-\Gamma^{2} / 4}$ ω_{d} is the frequency of the driving torque or force

Example: Driving a pendulum

Force diagram

$$
\begin{aligned}
& \vec{F}_{D R A G}=-b \dot{x} \hat{x} \\
& \vec{F}_{g}=-m g \hat{y} \\
& \vec{T}=-T \sin \theta \hat{x}+T \cos \theta \hat{y}
\end{aligned}
$$

Take a small angle approximation: $\sin \theta \approx \theta=\frac{x-d}{l}$ and $\cos \theta \approx 1$
This implies:

$$
\vec{T} \approx-T \frac{x-d}{l} \hat{x}+T \hat{y}
$$

In the \hat{x} direction we have

$$
m \ddot{x}=-b \dot{x}-T \frac{x-d}{l}
$$

and in the \hat{y} direction we have

$$
0=m \ddot{y}=-m g+T
$$

where the force has to be zero because there is no vertical motion (assuming a small angle). We now know $m g=T$.
Setting up our equation of motion we have

$$
\begin{aligned}
m \ddot{x}+b \dot{x}+\frac{m g}{l} x & =\frac{m g}{l} \Delta \sin \omega_{d} t \\
\ddot{x}+\frac{b}{m} \dot{x}+\frac{g}{l} x & =\frac{g \Delta}{l} \sin \omega_{d} t
\end{aligned}
$$

To compare with our previous solution, define $\Gamma \equiv b / m, \omega_{0}^{2} \equiv g / l$, and $f_{0} \equiv g \Delta / l$ to give

$$
\ddot{x}+\Gamma \dot{x}+\omega_{0}^{2} x=f_{0} \sin \omega_{d} t
$$

Let us examine the amplitude:

$$
A\left(\omega_{d}\right)=\frac{f_{0}}{\sqrt{\left(\omega_{0}^{2}-\omega_{d}^{2}\right)+\omega_{d}^{2} \Gamma^{2}}}
$$

There are a few cases we need to consider:
(1) $\quad \omega_{d} \rightarrow 0$

$$
A\left(\omega_{d}\right)=\frac{f_{0}}{\omega_{0}^{2}}=\frac{g \Delta / l}{g / l}=\Delta
$$

The amplitude will simply be the amplitude of the initial displacement. If the drive frequency is zero then $\tan \delta=0 \rightarrow \delta=0$.
(2) $\quad \omega_{d} \rightarrow \infty$
$A\left(\omega_{d}\right) \Rightarrow 0$ and $\tan \delta \rightarrow \infty \quad$ therefore $\delta=\pi$

A plot of the phase as a function of the drive frequency.

A plot of the amlitude as a function of the drive frequency.
There is a third possibility:
(3) $\omega_{d} \approx \omega_{0}$

This is called driving "on resonance." Even a small Δ can produce a large A, amplitude:

$$
A\left(\omega_{0}\right)=\frac{f_{0}}{\omega_{0} \Gamma}=\frac{\omega_{0}^{2} \Delta}{\omega_{0} \Gamma}=\frac{\omega_{0}}{\Gamma} \Delta=Q \Delta
$$

Where $Q \equiv \omega_{0} / \Gamma$ and is a large parameter which gives a large amplitude.

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

