8.03 Lecture 4

Coupled oscillators

In general, the motion of coupled systems can be extremely complicated. Editors note: watch the video lectures to see examples of complicated coupled oscillators.
Let's consider an example:

There are many kinds of motion in this system! If you stare at it long enough you an identify a special kind of motion! The "normal mode:" every part of the system is oscillating at the same phase and the same frequency. We will later realize the most general motion is a superposition of the normal modes. We can understand the system systematically step-by-step.
In general, coupled oscillators are complicated but there are easier cases we can solve, being guided by our physical intuition.
Can you guess the normal modes of this example?

Mode B:

$$
F=-2 k 2 \Delta x=-4 k \Delta x
$$

Where in Mode A we have $\omega_{A}^{2}=\frac{k}{m}$ and in Mode B we have $\omega_{B}^{2}=\frac{4 k}{2 m}=\frac{2 k}{m}$
Is there a Mode C? Yes!
Mode C:

Where there is no force, and $\omega_{C}=0$ because there is no oscillation. The whole system is simply translating.

To summarize:
Mode A:

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=A \cos \left(\omega_{A} t+\phi_{A}\right) \\
& x_{3}=-A \cos \left(\omega_{A} t+\phi_{A}\right)
\end{aligned}
$$

Mode B:

$$
\begin{aligned}
& x_{1}=B \cos \left(\omega_{B} t+\phi_{B}\right) \\
& x_{2}=-B \cos \left(\omega_{B} t+\phi_{B}\right) \\
& x_{3}=-B \cos \left(\omega_{B} t+\phi_{B}\right)
\end{aligned}
$$

Mode C:

$$
x_{1}=x_{2}=x_{3}=c+v t
$$

Therefore the general solution is:

$$
\begin{array}{ccccc}
x_{1}= & 0 & +B \cos \left(\omega_{B} t+\phi_{B}\right) & +c+v t \\
x_{2}= & A \cos \left(\omega_{A} t+\phi_{A}\right) & -B \cos \left(\omega_{B} t+\phi_{B}\right) & +c+v t \\
x_{3}= & -A \cos \left(\omega_{A} t+\phi_{A}\right) & -B \cos \left(\omega_{B} t+\phi_{B}\right) & +c+v t
\end{array}
$$

Where $A, B, C, \phi_{A}, \phi_{B}$ and v are constants to be determined by the initial conditions. Here we have 3 second order differential equations with 6 unknown constants.

From the analysis of the force diagram analysis we get:

$$
\begin{aligned}
2 m \ddot{x}_{1} & =k\left(x_{2}-x_{1}\right)+k\left(x_{3}-x_{1}\right) \\
m \ddot{x}_{2} & =k\left(x_{1}-x_{2}\right) \\
m \ddot{x}_{3} & =k\left(x_{1}-x_{3}\right)
\end{aligned}
$$

We can reorganize:

$$
\begin{aligned}
2 m \ddot{x}_{1} & =-2 k x_{1}+k x_{2}+k x_{3} \\
m \ddot{x}_{2} & =k x_{1}-k x_{2}+0 x_{3} \\
m \ddot{x}_{3} & =k x_{1}+0 x_{2}-k x_{3}
\end{aligned}
$$

Now our job is to solve the equations. It is possible to solve this coupled set of differential equations directly, but we can use a matrix as a tool to help us. We convert everything to matrices. Our equation of motion is now

$$
M \ddot{X}=-K X
$$

where:

$$
M=\left[\begin{array}{ccc}
2 m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \text { and } K=\left[\begin{array}{ccc}
2 k & -k & -k \\
-k & k & 0 \\
-k & 0 & k
\end{array}\right]
$$

We go to complex notation where $X_{j}=\operatorname{Re}\left[Z_{j}\right]$ and $Z \equiv e^{i(\omega t+\phi)} A$ and A is a column vector $\left(A_{1}, A_{2}, A_{3}\right)$
Solving the equation of motion:

$$
\begin{aligned}
& M \ddot{Z}=-K Z \\
& M \omega^{2} Z=K Z \\
& M \omega^{2} A=K A \\
& \omega^{2} A=M^{-1} K A \\
& \Rightarrow\left(M^{-1} K-\omega^{2} I\right) A=0
\end{aligned}
$$

Where I is the identity matrix. To have a soluation we need to solve

$$
\begin{gathered}
\operatorname{det}\left[M^{-1} K-\omega^{2} I\right]=0 \\
\left(M^{-1} K-\omega^{2} I\right)=\left[\begin{array}{ccc}
\frac{k}{m}-\omega^{2} & \frac{-k}{2 m} & \frac{-k}{2 m} \\
\frac{-k}{m} & \frac{k}{m}-\omega^{2} & 0 \\
\frac{-k}{m} & 0 & \frac{k}{m}-\omega^{2}
\end{array}\right]
\end{gathered}
$$

Define $\omega_{0}^{2} \equiv k / m$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\omega_{0}^{2}-\omega^{2} & \frac{-\omega_{0}^{2}}{2} & \frac{-\omega_{0}^{2}}{2} \\
-\omega_{0}^{2} & \omega_{0}^{2}-\omega^{2} & 0 \\
-\omega_{0}^{2} & 0 & \omega_{0}^{2}-\omega^{2}
\end{array}\right)=0 \\
&\left(\omega_{0}^{2}-\omega^{2}\right)^{3}-\frac{1}{2} \omega_{0}^{4}\left(\omega_{0}^{2}-\omega^{2}\right)-\frac{1}{2} \omega_{0}^{4}\left(\omega_{0}^{2}-\omega^{2}\right)=0 \\
&\left(\omega_{0}^{2}-\omega^{2}\right)\left(\omega_{0}^{4}-2 \omega_{0}^{2} \omega^{2}+\omega^{4}-\omega_{0}^{4}\right)=0 \\
&\left(\omega_{0}^{2}-\omega^{2}\right) \omega^{2}\left(\omega^{2}-2 \omega_{0}^{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad \omega & =\omega_{0}, \sqrt{2} \omega_{0}, 0 \\
\omega & =\sqrt{\frac{k}{m}}, \sqrt{\frac{2 k}{m}}, 0
\end{aligned}
$$

We get the same result! To get the relative amplitude of a normal made: Plut in the normal mode frequency you get in the equation $\left(M^{-1} K-\omega^{2} I\right) A=0$. For example: take Mode B where $\omega=\omega_{B}=\overline{2 k / m}$

$$
\begin{aligned}
& 0=2 k A_{1}+k A_{2}+k A_{3} \\
& 0=k A_{1}+k A_{2}+0 \\
& 0=k A_{1}+0+k A_{3}
\end{aligned} \Rightarrow A_{1}=-A_{2}=-A_{3}
$$

In Mode B we had

$$
\begin{aligned}
& x_{1}=B \cos \left(\omega_{B} t+\phi_{B}\right) \\
& x_{2}=-B \cos \left(\omega_{B} t+\phi_{B}\right) \quad \text { or } \quad X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}=-B \cos \left(\omega_{B} t+\phi_{B}\right)
\end{array}\right)=B\left(\begin{array}{c}
1 \\
-1 \\
x_{3}
\end{array}\right) \cos \left(\omega_{B} t+\phi_{B}\right) .
\end{aligned}
$$

It turns out this is just the simple harmonic oscillator!
Take Mode A as an example where $\omega=\omega_{A}=\sqrt{k / m}$. Plug in this frequency (into the equation $\left(M^{-1} K-\omega^{2} I\right) A=0$) to solve: $A_{1}=0$ and $A_{2}=-A_{3}$

$$
\begin{aligned}
& x_{1}=0 \\
& x_{2}=A \cos \left(\omega_{A} t+\phi_{A}\right) \\
& x_{3}=-A \cos \left(\omega_{A} t+\phi_{A}\right)
\end{aligned}
$$

There is an alternative way we can solve for the normal modes. We can define the length of the spring as l_{0} and define a new origin:

From the analysis of the force diagram we get:

$$
\begin{aligned}
2 m \ddot{x}_{1} & =k\left(x_{2}-x_{1}-l_{0}\right)+k\left(x_{3}-x_{1}-l_{0}\right) \\
m \ddot{x}_{2} & =k\left(x_{1}-x_{2}+l_{0}\right) \\
m \ddot{x}_{3} & =k\left(x_{1}-x_{3}+l_{0}\right)
\end{aligned}
$$

Redefine the x_{2} and x_{3} coordinates:

$$
x_{2}^{\prime}=x_{2}-l_{0} \quad x_{3}^{\prime}=x_{3}-l_{0}
$$

Now we have

$$
\begin{aligned}
2 m \ddot{x}_{1} & =k\left(x_{2}^{\prime}-x_{1}\right)+k\left(x_{3}^{\prime}-x_{1}\right) \\
m \ddot{x}_{2}^{\prime} & =k\left(x_{1}-x_{2}^{\prime}\right) \\
m \ddot{x}_{3}^{\prime} & =k\left(x_{1}-x_{3}^{\prime}\right)
\end{aligned}
$$

Reorganizing:

$$
\begin{aligned}
2 m \ddot{x}_{1} & =-2 k x_{1}+k x_{2}^{\prime}+k x_{3}^{\prime} \\
m \ddot{x}_{2}^{\prime} & =k x_{1}-k x_{2}^{\prime}+0 x_{3}^{\prime} \\
m \ddot{x}_{3}^{\prime} & =k x_{1}+0 x_{2}^{\prime}-k x_{3}^{\prime}
\end{aligned}
$$

Now use the definition of normal mode:

$$
\begin{aligned}
&\left(\begin{array}{l}
x_{1} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\operatorname{Re}\left[\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right) e^{i(\omega t+\phi)}\right] \\
&-2 m \omega^{2} A_{1}=-2 k A_{1}+k A_{2}+k A_{3} \\
&-m=\left(-2 k+2 m \omega^{2}\right) A_{1}+k A_{2}+k A_{3} \\
&-m \omega^{2} A_{2}=k A_{1}-k A_{2}+0 A_{2} \quad \Rightarrow \quad 0=k A_{1}+\left(m \omega^{2}-k\right) A_{2}+0 A_{3} \\
&-m \omega^{2} A_{3}=k A_{1}+0 A_{2}-k A_{3} \quad 0=K A_{1}+0 A_{2}+\left(m \omega^{2}-k\right) A_{3}
\end{aligned}
$$

Rewrite in matrix notation:

$$
\left(\begin{array}{ccc}
\left(2 m \omega^{2}-2 k\right) & k & k \\
k & \left(m \omega^{2}-k\right) & 0 \\
k & 0 & \left(m \omega^{2}-k\right)
\end{array}\right)\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right)=0
$$

To get a solution we need to solve the equation where the determinant of the left matrix is zero.

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\left(2 m \omega^{2}-2 k\right) & k & k \\
k & \left(m \omega^{2}-k\right) & 0 \\
k & 0 & \left(m \omega^{2}-k\right)
\end{array}\right)=0 \\
&\left(2 m \omega^{2}-2 k\right)\left(m \omega^{2}-k\right)^{2}-2 k^{2}\left(m \omega^{2}-k\right)=0 \\
&\left(m \omega^{2}-k\right)\left[\left(2 m \omega^{2}-2 k\right)\left(m \omega^{2}-k\right)-2 k^{2}\right]=0 \\
&\left(m \omega^{2}-k\right) \omega^{2}\left(2 m^{2} \omega^{2}-4 k m\right)=0 \\
& \omega=\sqrt{\frac{2 k}{m}}, \sqrt{\frac{k}{m}}, 0
\end{aligned}
$$

Get the same result!

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

