8.03 Lecture 6

Examples of compuled oscillationrs:

	Arbitrary Excitation	Normal Mode Excitation
Motion	Not Harmonic	Harmonic
Amplitude Ration	Varies	Constant
Energy	Migrates	stays

Next we will look at driven coupled oscillators.

Last time:
We solved the normal mode of this system. Now we would like to add a driving force on left mass.

$$
\vec{F}_{d}=F_{0} \cos \left(\omega_{d} t\right) \hat{x}
$$

Equations of motion:

$$
\begin{aligned}
& m \ddot{x}_{1}=-\left(k+\frac{m g}{l}\right) x_{1}+k x_{2}+\mathbf{F}_{\mathbf{0}} \cos \left(\omega_{\mathbf{d}} \mathbf{t}\right) \\
& m \ddot{x}_{2}=k x_{1}-\left(k+\frac{m g}{l}\right) x_{2}
\end{aligned}
$$

Putting the equation of motion into matrix from we have:

$$
M \ddot{X}=-K X+F \cos \left(\omega_{d} t\right)
$$

where

$$
\begin{gathered}
M=\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \quad K=\left(\begin{array}{cc}
k+\frac{m g}{l} & -k \\
-k & k+\frac{m g}{l}
\end{array}\right) \quad X=\binom{x_{1}}{x_{2}} \\
\Rightarrow \ddot{X}=-M^{-1} K X+M^{-1} F \cos \left(\omega_{d} t\right)
\end{gathered}
$$

$$
M^{-1} K=\left(\begin{array}{cc}
\frac{k}{m}+\frac{g}{l} & -\frac{k}{m} \\
-\frac{k}{m} & \frac{k}{m}+\frac{g}{l}
\end{array}\right) \quad M^{-1} F=\binom{\frac{F_{0}}{m}}{0}
$$

Last time we solved the homogeneous equation:

$$
\operatorname{det}\left(M^{-1} K-\omega^{2} I\right)=0
$$

Recall the solutions:

$$
\begin{gathered}
\omega_{1}^{2}=\frac{g}{l} \quad A^{(1)}=\binom{1}{1} \quad \text { and } \quad \omega_{2}^{2}=\frac{g}{l}+\frac{2 k}{m} \quad A^{(2)}=\binom{1}{-1} \\
\operatorname{det}\left(M^{-1} K-\omega^{2} I\right)=\left(\omega^{2}-\omega_{1}^{2}\right)\left(\omega^{2}-\omega_{2}^{2}\right)=0
\end{gathered}
$$

Homogeneous solution:

$$
x=\alpha\binom{1}{1} \cos \left(\omega_{1} t+\phi_{1}\right)+\beta\binom{1}{-1} \cos \left(\omega_{2} t+\phi_{2}\right)
$$

Now we have an additional driving force:

$$
\ddot{X}+M^{-1} K X=M^{-1} F \cos \left(\omega_{d} t\right)
$$

Similar to driven oscillator problem, we want to eliminate the $\cos \left(\omega_{d} t\right)$ term...
Go to complex notation: $\quad X=\operatorname{Re}[Z] \quad \ddot{Z}+M^{-1} K Z=M^{-1} F e^{i \omega_{d} t}$
Guess: $Z=B e^{i \omega_{d} t}$ where $B=\binom{B_{1}}{B_{2}}$
Plug our guess for Z into the equation:

$$
\begin{aligned}
& \Rightarrow\left(M^{-1} K-\omega_{d}^{2} I\right) B e^{i \omega_{d} t}=M^{-1} F e^{i \omega_{d} t} \\
& \Rightarrow\left(M^{-1} K-\omega_{d}^{2} I\right) B=M^{-1} F
\end{aligned}
$$

These are just two simultaneous equations:

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2} & \frac{-k}{m} \\
\frac{-k}{m} & \frac{k}{m}+\frac{g}{l}-\omega_{d}^{2}
\end{array}\right)\binom{B_{1}}{B_{2}}=\binom{\frac{F_{0}}{m}}{0} \\
\left(\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2}\right) B_{1}-\frac{k}{m} B_{2}=\frac{F_{0}}{m} \\
-\frac{k}{m} B_{1}\left(\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2}\right) B_{2}=0
\end{gathered}
$$

We can go ahead and solve it directly to get B_{1} and B_{2} or we can use "Cramer's Rule" which is a useful rule when solving a large number of coupled oscillators.
First define:

$$
\overleftrightarrow{E}=\left(\begin{array}{cc}
\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2} & -\frac{k}{m} \\
-\frac{k}{m} & \frac{k}{m}+\frac{g}{l}-\omega_{d}^{2}
\end{array}\right) \quad \vec{D}=\binom{\frac{F_{0}}{m}}{0}
$$

To use Cramer's rule, use one column from \overleftrightarrow{E} and \vec{D}

$$
\begin{aligned}
B_{1} & =\frac{|(\vec{D})()|}{\operatorname{det} \stackrel{\overleftrightarrow{E}}{\overleftrightarrow{ }}} \\
& =\frac{\left(\begin{array}{cc}
\frac{F_{0}}{m} & \frac{-k}{m} \\
0 & \left(\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2}\right)
\end{array}\right)}{\left(\omega_{d}^{2}-\omega_{1}^{2}\right)\left(\omega_{d}^{2}-\omega_{2}^{2}\right)} \\
& =\frac{\frac{F_{0}}{m}\left(\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2}\right)}{\left(\omega_{d}^{2}-\omega_{1}^{2}\right)\left(\omega_{d}^{2}-\omega_{2}^{2}\right)}
\end{aligned}
$$

Which explodes when $\omega_{d}=\omega_{1}, \omega_{2}$ which are the frequencies of the normal modes. Similiarly:

$$
\begin{aligned}
B_{2} & =\frac{|()(\vec{D})|}{\operatorname{det} \overleftrightarrow{E}} \\
& =\frac{\left(\begin{array}{cc}
\frac{k}{m}+\frac{g}{l}-\omega_{d}^{2} & \frac{F_{0}}{m} \\
-\frac{k}{m} & 0
\end{array}\right)}{\left(\omega_{d}^{2}-\omega_{1}^{2}\right)\left(\omega_{d}^{2}-\omega_{2}^{2}\right)} \\
& =\frac{\frac{F_{0}}{m}\left(\frac{k}{m}\right)}{\left(\omega_{d}^{2}-\omega_{1}^{2}\right)\left(\omega_{d}^{2}-\omega_{2}^{2}\right)}
\end{aligned}
$$

$$
\frac{B_{1}}{B_{2}}=\frac{k / m+g / l-\omega_{d}^{2}}{k / m}
$$

(1) $\omega_{d}^{2}=\omega_{1}^{2} \quad=\frac{g}{l} \quad \Rightarrow \quad \frac{B_{1}}{B_{2}}=1$
(2) $\omega_{d}^{2}=\omega_{2}^{2}=\frac{g}{l}+\frac{2 k}{m} \Rightarrow \frac{B_{1}}{B_{2}}=-1$

Full solution:

$$
\begin{aligned}
& x_{1}=\alpha \cos \left(\omega_{1} t+\phi_{1}\right)+\beta \cos \left(\omega_{2} t+\phi_{2}\right)+B_{1} \cos \left(\omega_{d} t\right) \\
& x_{2}=\alpha \cos \left(\omega_{1} t+\phi_{1}\right)-\beta \cos \left(\omega_{2} t+\phi_{2}\right)+B_{2} \cos \left(\omega_{d} t\right)
\end{aligned}
$$

Where the term with B amplitude is the particular solution and the terms with α and β amplitude are the homogeneous solution.

Excite Made 1 Excite Mode 2
 (Near ω_{2})
\Downarrow

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

