8.03 Lecture 8

This is what we have done:

And we go from N coupled equations of motion to and infinite number of coupled equations of motion. Idea: we can make use of the "Space Translation Invariance". This symmetry can be translated into mathematics: $A^{\prime}=S A$ such that $A_{j}^{\prime}=A_{j+1}$ If A is an eigenvector of S :

$$
\begin{aligned}
S A & =\beta A \\
A_{j}^{\prime} & =\beta A_{j}=A_{j+1} \\
A_{j} & =\beta^{j} A_{0} \propto \beta^{j}
\end{aligned}
$$

Consider $\beta=e^{i k a}$ (Recall: we need $|\beta|=1$ so that A_{j} does not go to ∞ when $j \rightarrow \infty$) We get $A_{j} \propto e^{i j k a}$
Let's consider this example:

A lot of point-like massive particles connected by a massless string, separated a distance a. These particles can only move up and down. We have constant tension T and small vibrations. Question: what will be the resulting motion of the system?
Force diagram:

Assume $y_{j} \ll a \Rightarrow\left(\theta_{1}, \theta_{2}\right) \ll 1$
Horizontal direction: $m \ddot{x}_{j}=-T \cos \theta_{1}+T \cos \theta_{2}$
Vertical direction: $m \ddot{y}_{j}=-T \sin \theta_{1}-T \sin \theta_{2}$
Since θ_{1} and θ_{2} are small $\Rightarrow \cos \theta \approx 1$ and $\sin \theta \approx \theta$

$$
\begin{aligned}
m \ddot{x}_{j} & =-T+T=0 \quad(\text { No motion in the horizontal direction }) \\
m \ddot{y}_{j} & =-T\left(\sin \theta_{1}+\sin \theta_{2}\right) \\
& \approx-T\left(\frac{y_{j}-y_{j-1}}{a}+\frac{y_{j}-y_{j+1}}{a}\right) \\
m \ddot{y}_{j} & =\frac{T}{a}\left(y_{j-1}-2 y_{j}+y_{j+1}\right)
\end{aligned}
$$

Normal modes: $y_{j}=\operatorname{Re}\left[A_{j} e^{i(\omega t+\phi)}\right]$
From the S matrix, the eigenvectors are $A=\left(\begin{array}{c}\vdots \\ A_{j} \\ A_{J+1} \\ \vdots\end{array}\right)$

$$
A_{j} \propto \beta^{j}=e^{i j k a}
$$

Reminder: a is the distance between particles in the \hat{x} direction. To get $M^{-1} k$ matrix:

$$
\begin{gathered}
M=\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & \ddots
\end{array}\right) \quad k=\left(\begin{array}{cccccc}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & -\frac{T}{a} & \frac{2 T}{a} & -\frac{T}{a} & 0 & \cdots \\
\cdots & 0 & -\frac{T}{a} & \frac{2 T}{a} & -\frac{T}{a} & \cdots \\
\cdots & 0 & 0 & \ddots & \ddots & \ddots
\end{array}\right) \\
M^{-1} k=\left(\begin{array}{cccccc}
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & -\frac{T}{m a} & \frac{2 T}{m a} & -\frac{T}{m a} & 0 & \cdots \\
\cdots & 0 & -\frac{T}{m a} & \frac{2 T}{m a} & -\frac{T}{m a} & \cdots \\
\cdots & 0 & 0 & \ddots & \ddots & \ddots
\end{array}\right)
\end{gathered}
$$

To get ω, since $M^{-1} k$ and S share the same eigenvectors: Calculate $M^{-1} k A=\omega^{2} A$. The j th term:

$$
\begin{aligned}
\omega^{2} A_{j} & =\frac{T}{m a}\left(-A_{j-1}+2 A_{j}-A_{j+1}\right) \\
\omega^{2} A_{j} & =\frac{T}{m a} A_{j}\left(-e^{-i k a}+2+e^{i k a}\right. \\
\omega^{2} & =\frac{T}{m a}(2-2 \cos k a) \\
& =2 \omega_{0}^{2}(1-\cos k a) \\
\omega^{2} & =4 \omega_{0}^{2} \sin ^{2}\left(\frac{k a}{2}\right)
\end{aligned}
$$

Where we have defined $\omega_{0}^{2} \equiv T / m a$. This is almost the same result that we got from last lecture! $\omega=\omega(k)$, or ω is a function of k. This is known as a "dispersion relation." When k (the wavenumber $k=2 \pi / \lambda$) is given then ω (the angular frequency) is determined.
Our normal modes are standing waves:

Oscillating at frequency ω as determined by k

This system is infinitely long. All possible k values (wavelengths) are allowed. Each k value corresponds to a different normal mode with angular frequency given by $\omega(k)$.
Now we still try to solve a finite system using the solution for the infinite system. Consider the following boundary condition:
(1) Fixed end:

Boundary conditions: $y_{0}=0 \quad y_{N+1}=0$

What are the normal modes that satisfy the boundary conditions? There are two values of k which give the same ω

$$
\omega(k)=\omega(-k)
$$

Therefore: linear combinations of $e^{i j k a}$ and $e^{-i j k a}$ are also normal modes. Guess:

$$
y_{j}=\operatorname{Re}\left[e^{i(\omega t+\phi)}\left(\alpha e^{i j k a}+\beta e^{-i j k a}\right)\right]
$$

Where α and β are constants. Use the boundary conditions:

$$
\begin{gathered}
y_{0}=0 \Rightarrow \alpha+\beta=0 \Rightarrow \alpha=-\beta \\
y_{N+1}=0 \Rightarrow \alpha\left(e^{i(N+1) k a}+e^{-i(N+1) k a}\right)=0 \\
2 i \sin (N+1) k a=0 \Rightarrow k a=\frac{n \pi}{N+1}
\end{gathered}
$$

Where n is a positive integer less than N
(More examples:)
(2) Open end:

Boundary conditions: $y_{1}=y_{0} \quad y_{N+1}=y_{N}$

From first boundary condition we get:

$$
\begin{array}{r}
\alpha+\beta=\alpha e^{i k a}+\beta e^{-i k a} \\
\alpha\left(1-e^{i k a}\right)=\beta\left(e^{-i k a}-a\right)
\end{array}
$$

Second boundary condition:

$$
\begin{array}{r}
\alpha e^{i N k a}+\beta e^{-i N k a}=\alpha e^{i(N+1) k a}+\beta e^{-i(N+1) k a} \\
\alpha e^{i N k a}\left(1-e^{i k a}\right)=\beta e^{-i N k a}\left(e^{-i k a}-1\right)
\end{array}
$$

Dividing the first condition by the second condition:

$$
\begin{array}{r}
e^{i N k a}=e^{-i N k a} \\
\Rightarrow e^{2 i N k a}=1 \\
\Rightarrow k a=\frac{2 n \pi}{2 N}=\frac{n \pi}{N}
\end{array}
$$

$$
\begin{aligned}
\beta & =\alpha e^{i k a} \\
y_{j} & =\alpha\left(e^{i j k a}+e^{-i(j-1) k a}\right) \\
& =\alpha e^{-i k a / 2}\left(e^{i(j-1 / 2) k a}+e^{-i(j-1 / 2) k a}\right) \\
& \propto \cos (k a(j-1 / 2))
\end{aligned}
$$

(3)

Boundary conditions: $y_{0}=0 \quad y_{N+1}=\Delta \cos \omega_{d} t$
Need to find the "particular solution"
y_{j} must be oscillating at a frequency ω_{d}
What is the corresponding k_{d} which gives ω_{d} ? Use $\omega(k)$:

$$
\omega_{d}^{2}=2 \omega_{0}^{2}\left(1-\cos k_{d} a\right)
$$

Solve to get $k_{d} a=\cos ^{-1}\left(1-\frac{\omega_{d}^{2}}{2 \omega_{0}^{2}}\right)$
Guess:

$$
y_{j}=\operatorname{Re}\left[e^{i \omega_{d} t}\left(\alpha e^{i j k_{d} a}+\beta e^{-i j k_{d} a}\right)\right]
$$

Use the boundary condition at $j=0$:

$$
\begin{gathered}
y_{0}=0 \Rightarrow \alpha+\beta=0 \Rightarrow \beta=-\alpha \\
y_{j}=\operatorname{Re}\left[2 i e^{i \omega_{d} t} A \sin j k_{d} a\right]
\end{gathered}
$$

Use the boundary condition at $j=N+1$:

$$
\begin{aligned}
y_{N+1} & =Z \cos \omega_{d} t=\operatorname{Re}\left[\Delta e^{i \omega_{d} t}\right] \\
\Rightarrow \Delta & =2 i A \sin (N+1) k_{d} a \\
A & =\frac{\Delta}{2 i \sin (N+1) k_{d} a} \\
\Rightarrow y_{j} & =\operatorname{Re}\left[\frac{\Delta \sin j k_{d} a}{\sin (N+1) k_{d} a} e^{i \omega_{d} t}\right] \\
& =\frac{\Delta \sin j k_{d} a}{\sin (N+1) k_{d} a} \cos \omega_{d} t
\end{aligned}
$$

Which explodes when $k_{d} a=\frac{n \pi}{N+1}!!$ (When the driving force matches the normal mode frequency)
Summary:

1. Symmetry + does not explode at the edge of the universe choose $\Rightarrow \beta=e^{i k a}$
2. Equation of motion can be derived from physical laws
3. Dispersion relation $\omega(k)$ can be derived from items 1 and 2
4. The allowed k value is determined by boundary conditions. The full solution is a linear combination of normal modes
5. Use initial conditions to determine unknowns

Now make it continuous!!!

j th term of

$$
M^{-1} k A \Rightarrow \omega^{2} A_{j}=\frac{T}{m a}\left(-A_{j-1}+2 A_{j}-A_{j+1}\right)
$$

In the continuous limit this equation transforms into:

$$
M^{-1} k A \Rightarrow \omega^{2} A(x)=\frac{T}{m a}(-A(x-a)+2 A(x)-A(x+a))
$$

If we Taylor Expand:

$$
\begin{gathered}
A(x-a)=A(x)-a A^{\prime}(x)+\frac{1}{2} a^{2} A^{\prime \prime}(x)+\cdots \\
A(x+a)=A(x)+a A^{\prime}(x)+\frac{1}{2} a^{2} A^{\prime \prime}(x)+\cdots \\
\Rightarrow \quad-A(x-a)+2 A(x)-A(x+a)=-\frac{\partial^{2} A(x)}{\partial x^{2}} a^{2}+\cdots \\
M^{-1} k A(x)=-\frac{T}{m a} \frac{\partial^{2} A(x)}{\partial x^{2}} a^{2}+\cdots
\end{gathered}
$$

In the $a \ll$ wavelength we can ignore the a^{3} and higher order terms. We define $\rho_{L} \equiv \frac{m}{a}$ and $M^{-1} k$ becomes an "operator":

$$
\begin{aligned}
M^{-1} k & \rightarrow-\frac{T}{\rho_{L}} \frac{\partial^{2}}{\partial x^{2}} \\
\frac{\partial \psi(x, t)}{\partial t^{2}} & =\frac{T}{\rho_{L}} \frac{\partial \psi(x, t)}{\partial x^{2}}
\end{aligned}
$$

In the last equation we plug in the normal mode $e^{i k x} e^{i \omega t}$
Dispersion relation:

$$
\begin{gathered}
\omega^{2}=\frac{T}{\rho_{L}} k^{2} \\
\frac{\omega}{k}=v_{p}=\sqrt{\frac{T}{\rho_{L}}}
\end{gathered}
$$

Where v_{p} is the phase velocity, ω is the angular frequency and k is the wave number.

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

