8.03 Lecture 12

Systems we have learned:
Wave equation:

$$
\frac{\partial^{2} \psi}{\partial t^{2}}=v_{p}^{2} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

There are three different kinds of systems discussed in the lecture:

(1) String with constant tension and mass per unit length ρ_{L}

$$
v_{p}=\sqrt{\frac{T}{\rho_{L}}}
$$

(2) Spring with spring constant k, length l, and mass per unit length ρ_{L}

$$
v_{p}=\sqrt{\frac{k l}{\rho_{L}}}
$$

(3) Organ pipe with room pressure P_{0} and air density ρ

$$
v_{p}=\sqrt{\frac{\gamma P_{0}}{\rho}}
$$

$$
\begin{array}{ll}
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\epsilon_{0}} & \Rightarrow \text { Gauss' Law } \\
\vec{\nabla} \cdot \vec{B}=0 & \Rightarrow \text { Gauss' Law for magnetism } \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \Rightarrow \text { Faraday's Law } \\
\vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{J}+\epsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) & \Rightarrow \text { Ampere's Law }
\end{array}
$$

In the vacuum: $\rho=0$ and $\vec{J}=0$ and we get:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=0 \\
& \vec{\nabla} \cdot \vec{B}=0 \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \vec{\nabla} \times \vec{B}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Where in the last two equations we see a changing magnetic field generates an electric field and a changing electric field generates a magnetic field. Can you see the EM wave solution from these equations? Maxwell saw it!
We need to use this identity:

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-(\vec{\nabla} \cdot \vec{\nabla}) \vec{A}
$$

Where $\vec{\nabla} \cdot \vec{\nabla} \equiv \vec{\nabla}^{2}$ is the Laplacian operator. In the vacuum:

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{E})^{-\partial \vec{B} / \partial t}=\vec{\nabla}(\vec{\nabla} \cdot \vec{E})^{0}-\left(\vec{\nabla}^{2}\right) \vec{E}
$$

Where we have made replacements based on the vacuum Maxwell equations above. Let's first examine the left hand side:

$$
\begin{aligned}
\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right) & =-\frac{\partial}{\partial t}(\vec{\nabla} \times \vec{B}) \\
& =-\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
& =-\vec{\nabla}^{2} E \\
\Rightarrow \quad \vec{\nabla}^{2} E & =\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{aligned}
$$

Recall

$$
\nabla^{2} \equiv\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)
$$

And so we have a wave equation!!

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \vec{E}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

This equation changed the world! Maxwell is the first one who recognized it because of the term he put in. It was a wave equation with speed equal to the speed of light:

$$
v_{p}=c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

What about the \vec{B} field? We can do the same exercise:

$$
\vec{\nabla}^{2} B=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{B}}{\partial t^{2}}
$$

It is very important that the associated magnetic field also satisfies the wave equation. From the Maxwell equation \vec{E} creates \vec{B} and \vec{B} creates \vec{E}, therefore they can not exist without each other.

> 1638 Galileo: speed of light is large
> 1676 Romer: $2.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
> 1729 James Bradley: $3.01 \times 10^{8} \mathrm{~m} / \mathrm{s}$

This means that in vacuum you can excite EM waves! What is oscillating? The field! Before we tackle EM waves, let's review divergence and curl briefly.
*Field:
Scalar field: every positing in the space gets a number. Temperature is an example.
Vector field: Instead of a number or scalar, every point gets a vector.

$$
\vec{A}(x, y, z)=A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}
$$

The electric and magnetic fields are vector fields, e.g.:

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

To understand the structure of vector fields:
Divergence (using our definition of $\vec{\nabla}$ from above):

$$
\vec{\nabla} \cdot \vec{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}
$$

The divergence is a measure of how much the vector v spreads out (diverges) from a point:

The divergence of this vector field is positive.

The divergence of this vector field is zero.

Curl:

$$
\vec{\nabla} \times \vec{A}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{z}
\end{array}\right|=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{z}
$$

What exactly does curl mean? It is a measure of how much the vector \vec{A} "curls around" a point.

This vector field has a large curl.

This vector field has no curl.

Gauss' Theorem (or the Divergence Theorem):

$$
\iiint_{V}(\vec{\nabla} \cdot \vec{A}) d \tau=\oint_{S} \vec{A} \cdot \overrightarrow{d a}
$$

Which allows us to relate the integral of the divergence over the whole volume (RHS) to a 2-D surface integral (LHS).

Stokes' Theorem:

$$
\iint_{S}(\vec{\nabla} \times \vec{A}) \cdot \overrightarrow{d a}=\oint_{P} \vec{A} \times \overrightarrow{d l}
$$

Which allows us to related the surface integral over the curl (LHS) to a line integral integral over a closed path (RHS).

Gauss' Theorem

Stokes' theorem
*Consider a "plane wave" solution:

$$
\begin{aligned}
\vec{E} & =\operatorname{Re}\left[E_{0} e^{i(k z-\omega t)} \hat{x}\right] \quad \text { Only in the } \hat{x} \text { direction. } \\
& =\left\{E_{0} \cos (k z-\omega t), 0,0\right\}
\end{aligned}
$$

Check if it satisfies

$$
\begin{aligned}
& \vec{\nabla}^{2} E=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}} \\
\Rightarrow \quad & \frac{\partial^{2} E_{x}}{\partial z^{2}} \hat{x}=\mu_{0} \epsilon_{0} \frac{\partial^{2} \vec{E}_{x}}{\partial t^{2}} \hat{x}
\end{aligned}
$$

In \hat{x} direction: $-E_{0} k^{2} \cos (k z-\omega t)=-\mu_{0} \epsilon_{0} \omega^{2} E_{0} \cos (k z-\omega t)$

$$
\frac{\omega}{k}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=c \Rightarrow \text { Condition needed to satisfy the wave equation. }
$$

*What about \vec{B} ?

$$
\begin{aligned}
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \\
& =\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
E_{x} & 0 & 0
\end{array}\right|=\frac{\partial E_{x}}{\partial z} \hat{y}-\frac{\partial E_{/}}{\partial y} \hat{z} \\
& =-k E_{0} \sin (k z-\omega t) \hat{y} \\
\Rightarrow \quad \vec{B} & =\frac{k}{\omega} E_{0} \cos (k z-\omega t) \hat{y}=\frac{E_{0}}{c} \cos (k z-\omega t) \hat{y}
\end{aligned}
$$

What did we learn from this exercise?

1. \vec{E} must come with \vec{B}. In vacuum: the two fields are perpendicular and they are in phase. If \vec{k} is the direction of propagation then $\vec{B}=\frac{1}{c} \hat{k} \times \vec{E}$ The amplitude of the magnetic field is equal to the amplitude of the electric field divided by the speed of light.
2. The EM wave is non-dispersive, meaning that the speed of the wave c is independent of the wave number $k: \frac{\omega}{k}=c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}$
3. The direction of the propagating EM wave is $\vec{E} \times \vec{B}$

In general a propagating EM wave can be written as:

$$
\vec{E}(r, t)=\operatorname{Re}\left[\vec{E}_{0} e^{i(\vec{k} \cdot \vec{r}-\omega t+\phi)}\right]
$$

Where $\vec{E}_{0} \equiv E_{0_{x}} \hat{x}+E_{0_{y}} \hat{y}+E_{0_{z}} \hat{z}, \vec{r} \equiv x \hat{x}+y \hat{y}+z \hat{z}$ and $\omega \equiv c k$
Given this electric field, we can get the magnetic field:

$$
\vec{B}(r, t)=\frac{1}{c} \hat{k} \times \vec{E}
$$

Example:

$$
\begin{gathered}
\vec{k}=\frac{2 \pi}{\lambda}\left\{\frac{\hat{x}}{\sqrt{2}}+\frac{\hat{y}}{\sqrt{2}}\right\} \\
\vec{E}_{0}=-\frac{E_{0}}{\sqrt{2}} \hat{x}+\frac{E_{0}}{\sqrt{2}} \hat{y} \\
\vec{k} \cdot \vec{r}=\frac{2 \pi}{\sqrt{2} \lambda}(x+y) \\
\Rightarrow \vec{E}(x, y, z)=E_{0}\left(-\frac{\hat{x}}{\sqrt{2}}+\frac{\hat{y}}{\sqrt{2}}\right) \cos \left(\frac{\sqrt{2} \pi}{\lambda}(x+y)-\omega t\right) \\
\sim \quad \vec{K}
\end{gathered}
$$

$$
\vec{B}=\frac{1}{c} \hat{k} \times \vec{E} \Rightarrow \vec{B}(x, y, z)=\frac{E_{0}}{c} \hat{z} \cos \left(\frac{\sqrt{2} \pi}{\lambda}(x+y)-\omega t\right)
$$

If there is no other material, this EM wave will travel forever...
Now let's put something into the game: A "perfect conductor"

A busy world inside this system! All the little charges are moving around without cost of energy (there is no dissipation).

Incident wave:

$$
\left\{\begin{array}{l}
\vec{E}_{I}=\frac{E_{0}}{2} \cos (k z-\omega t) \hat{x} \\
\vec{B}_{I}=\frac{E_{0}}{2 c} \cos (k z-\omega t) \hat{y}
\end{array}\right.
$$

To satisfy the boundary conditions $\vec{E}=0$ at $z=0$ we need a reflected wave!

$$
\begin{aligned}
\vec{E}_{R} & =-\frac{E_{0}}{2} \cos (-k z-\omega t) \hat{x} \\
\vec{B}_{R} & =\frac{E_{0}}{2 c} \cos (-k z-\omega t) \hat{y}
\end{aligned}
$$

$$
\stackrel{\rightharpoonup}{B_{R}}=\frac{1}{c} \hat{k} \times \vec{E}_{R}
$$

$$
\begin{aligned}
\vec{E}=\vec{E}_{I}+\vec{E}_{R} & =\frac{E_{0}}{2}(\cos (k z-\omega t)-\cos (-k z-\omega t)) \hat{x} \\
& =E_{0} \sin (\omega t) \sin (k z) \hat{x} \\
\vec{B}=\vec{B}_{I}+\vec{B}_{R} & =\frac{E_{0}}{2 c}(\cos (k z-\omega t)+\cos (-k z-\omega t)) \hat{y} \\
& =\frac{E_{0}}{c} \cos (\omega t) \cos (k z) \hat{y}
\end{aligned}
$$

Energy density?

$$
\begin{aligned}
U_{E} & =\frac{1}{2} \epsilon_{b} E^{2}=\frac{\epsilon_{0}}{2} E_{0}^{2} \sin ^{2} \omega t \sin ^{2} k z \\
U_{B} & =\frac{1}{2 \mu_{0}} B^{2}=\frac{\epsilon_{0}}{2} E_{0}^{2} \cos ^{2} \omega t \cos ^{2} k z
\end{aligned}
$$

Poynting vector: directional energy flux, or the rate of energy transfer per unit area:

$$
\begin{aligned}
\vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{0}} & =\frac{1}{\mu_{0}} E_{x} B_{y} \hat{z} \\
& =\frac{E_{0}^{2}}{\mu_{0} c} \sin \omega t \cos \omega t \sin k z \cos k z \hat{z} \\
& =\frac{E_{0}^{2}}{4 \mu_{0} c} \sin (2 \omega t) \sin (2 k z) \hat{z}
\end{aligned}
$$

This is how a microwave oven works!
*The EM waves are bounced around inside the oven
*EM waves increase the vibration of the molecules in the oven and increase the temperature of the food.

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

