8.03 Lecture 17

*Review: Snell's Law

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Polarization: Another way to "add more dimensions"! If wee choose our coordinate system such that the wave is going in the z-direction then:

$$
\vec{E}(z, t)=\operatorname{Re}\left[\overrightarrow{\psi_{0}} \cdot e^{i(k z-\omega t)}\right]
$$

where $\vec{\psi}=\psi_{1} \hat{x}+\psi_{2} \hat{y}$. Can be understand as superposition of two EM waves!:

$$
\psi_{1}=A_{1} e^{i \psi_{1}} \quad \psi_{2}=A_{2} e^{i \psi_{2}}
$$

Or sometimes we write it as

$$
\mathbb{E}=\operatorname{Re}\left[\mathbb{Z} \cdot e^{i(k z-\omega t)}\right]
$$

Where

$$
\mathbb{Z}=\binom{\psi_{1}}{\psi_{2}}
$$

(1.) If we add two waves with no phase difference:

$$
\begin{aligned}
\vec{E}_{1} & =E_{0} \cos (k z-\omega t) \hat{x} \\
\vec{E}_{2} & =E_{0} \cos (k z-\omega t) \hat{y}
\end{aligned}
$$

Write it in matrix notation:

$$
\begin{aligned}
\vec{E} & =\operatorname{Re}\left[\left(E_{0} \hat{x}+E_{0} \hat{y}\right) e^{i(k z-\omega t)}\right] \\
\mathbb{E} & =\operatorname{Re}\left[\binom{E_{0}}{E_{0}} e^{i(k z-\omega t)}\right]
\end{aligned}
$$

$$
Z=E_{0}\binom{1}{1}
$$

Linearly polarized! Other examples:

$$
\mathbb{Z}=E_{0}\binom{1}{0} \quad \mathbb{Z}=E_{0}\binom{0}{1} \quad \mathbb{Z}=E_{0}\binom{\cos \theta}{\sin \theta}
$$

(2.) If we add two waves together with the same amplitude but a phase difference of $\pi / 2$

$$
\begin{aligned}
\vec{E}_{1}= & E_{0} \cos (k z-\omega t) \hat{x} \\
\vec{E}_{2}= & E_{0} \sin (k z-\omega t) \hat{y} \\
= & E_{0} \cos (k z-\omega t-\pi / 2) \hat{y} \\
\vec{E}= & \operatorname{Re}\left[\left(E_{0} \hat{x}-i E_{0} \hat{y}\right) e^{i(k z-\omega t)}\right] \\
\mathbb{E}= & \operatorname{Re}\left[E_{0}\binom{1}{-i} e^{i(k z-\omega t)}\right] \\
& Z=E_{0}\binom{1}{-i}
\end{aligned}
$$

Clockwise "right-handed." Circularly polarized!

Counter-clockwise:

$$
\mathbb{Z}=E_{0}\binom{1}{i}
$$

(3.)We can also add two waves with different amplitude

$$
\begin{aligned}
\vec{E}_{1} & =\frac{E_{0}}{2} \cos (k z-\omega t) \hat{x} \\
\vec{E}_{2} & =E_{0} \sin (k z-\omega t) \hat{y} \\
\vec{E} & =\vec{E}_{1}+\vec{E}_{2} \\
\mathbb{E} & =\operatorname{Re}\left[E_{0}\binom{1 / 2}{-i} e^{i(k z-\omega t)}\right]
\end{aligned}
$$

"Elliptically polarized":

$$
\mathbb{Z}=E_{0}\binom{1 / 2}{i} \quad \mathbb{Z}=E_{0}\binom{A}{i B} \quad \mathbb{Z}=E_{0}\binom{C}{-i D}
$$

(4.) There is another way to produce elliptically polarized EM waves: phase difference: $\Delta \phi \neq \frac{\pi}{2}, \frac{3 \pi}{2} \cdots$ otherwise, circularly polarized
Example:

$$
\begin{aligned}
& \vec{E}_{1}=E_{0} \cos (k z-\omega t) \hat{x} \\
& \vec{E}_{2}=E_{0} \cos (k z-\omega t+\Delta \phi) \hat{y}
\end{aligned}
$$

Elliptically polarized

In general: $A \geq|B|$

$$
\mathbb{Z}=\binom{\psi_{1}}{\psi_{2}}=e^{i \phi}\binom{A \cos \theta-i B \sin \theta}{A \sin \theta+i B \cos \theta}
$$

(5.) "Unpolarized" light: EM waves produced independently by a large number of uncorrelated emitters. Not:

Because that gives zero!
*Emitted at different time with slightly different frequency!

Polarizer Example: grid of metal wires:

1. If the EM wave is in the \hat{y} direction then it will induce movement of the electron in the \hat{y} direction (in the metal wires). EM wave is reflected like what we worked on before with metal plates.
2. EM wave in the \hat{x} direction cannot induce movement of electrons in the \hat{x} direction

In this case, the "Easy Axis" is \hat{x}
$P_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ for polarizer with \hat{x} easy axis:
$P_{\pi / 2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ for polarizer with \hat{y} easy axis:

In general:

$$
P_{\theta}=\left(\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right) \quad P_{\pi / 4}=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Intensity $\propto\left\langle\vec{E}^{2}\right\rangle$. After passing through the polarizer the perpendicular component is eliminated

$$
\vec{E}_{0} \Rightarrow\left|\vec{E}_{f}\right|=\left|\vec{E}_{0}\right| \cos \theta \Rightarrow I_{f} \propto\left\langle\vec{E}_{f}\right\rangle \Rightarrow I_{f}=I_{0} \cos ^{2} \theta
$$

Example:

$$
I_{f}=0
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

