8.03 Lecture 19

*Today: 1. EM waves in matter and 2. Brewster's Angle.
*Review of Gauss's Theorem:

$$
Q=\int_{Q}(\vec{\nabla} \cdot \vec{A}) d \tau=\oint_{S} \vec{A} \cdot \overrightarrow{d a}
$$

*Review of Stokes' Theorem:

$$
\vec{V}=\int_{S}(\vec{\nabla} \times \vec{A}) \overrightarrow{d a}=\oint_{L} \vec{A} \times \overrightarrow{d l}
$$

*Review of Polarization (dipole moment):

$$
P(r)=\oint_{V} \rho\left(r_{0}\right)\left(r_{0}-r\right) d^{3} r_{0}
$$

*Review of magnetic moment:

$$
M=\frac{1}{2} \int_{V} r \times J d V
$$

We have talked about EM waves in the vacuum. We know how to generate EM waves. Now: we are interested in EM waves in dielectrics.

1. In perfect conductors: We have unlimited supply of charges. It costs nothing to move them around.
2. In dielectrics: All charges are attached to specific atoms or molecules. They are bounded. They can only move a bit within an atom or molecule.

In the presence of an electric field: there is an induced dielectric polarization:

In the presence of the matter, there are bound charges and free charges: $\rho=\rho_{f}+\rho_{b}$. Take a look at the effect of free charge, we define the electric displacement field, \vec{D} :

$$
\vec{D} \equiv \epsilon_{0} \vec{E}+\vec{P}
$$

Where

$$
-\nabla \cdot \vec{P} \equiv \rho_{b}
$$

and \vec{P} is the electric dipole moment.
Gauss' Law:

$$
\begin{aligned}
\epsilon_{0} \nabla \cdot \vec{E} & =\rho_{f}+\rho_{b}=\rho_{f}-\nabla \cdot P \\
\Rightarrow \nabla \cdot \vec{D} & =\nabla \cdot\left(\epsilon_{0} \vec{E}+\vec{P}\right)=\rho_{f} \\
\Rightarrow \nabla \cdot \vec{D} & =\rho_{f}
\end{aligned}
$$

\vec{D} field is related to the effect of free charge.

Similiary in the presense of the matter, there are bound currents and free currents.

$$
\vec{J}=\vec{J}_{f}+\vec{J}_{b}+\vec{J}_{p}
$$

Where the last term is the polarization current.

$$
\vec{H} \equiv \frac{\vec{B}}{\mu_{0}}-\vec{M} \quad \text { where } \quad \vec{\nabla} \times \vec{M}=\vec{J}_{b}
$$

Where \vec{H} is the demagnetizing field and \vec{M} is the magnetic dipole moment. Ampere's Law:

$$
\begin{aligned}
\nabla \times \vec{B} & =\mu_{0}\left(\vec{J}+\epsilon_{0} \frac{\partial \vec{E}}{\partial t}\right) \\
\Rightarrow \frac{1}{\mu_{0}}(\nabla \times \vec{B}) & =\vec{J}_{f}+\underbrace{\vec{\nabla} \times \vec{M}}_{\text {Band Cur. }}+\overbrace{\frac{\partial \vec{P}}{\partial t}}^{\text {Polarization cur. }}+\epsilon_{0} \frac{\partial \vec{E}}{\partial t} \\
\Rightarrow \nabla \times\left(\frac{1}{\mu_{0}} \vec{B}-\vec{M}\right) & =\vec{J}_{f}+\frac{\partial \vec{D}}{\partial t} \\
\nabla \times \vec{H} & =\vec{J}_{f}+\frac{\partial \vec{D}}{\partial t}
\end{aligned}
$$

Maxwell's Equation in matter where there is no free charge ($\rho_{f}=0, \vec{J}_{f}=0$)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{D}=0 \\
\vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}
\end{array}\right. \\
& \text { If } \quad \vec{P} \propto \vec{E} \Rightarrow \vec{D}=\epsilon_{0} \vec{E}+\vec{P}=\epsilon \vec{E} \\
& \text { If } \quad \vec{M} \propto \vec{B} \Rightarrow \vec{H}=\frac{1}{\mu_{0}} \vec{B}-\vec{M}=\frac{\vec{B}}{\mu}
\end{aligned}
$$

Where $\epsilon \equiv k_{e} \epsilon_{0}$ is the permittivity which goes up. Roughly it can be thought of as the resistance of forming an electric field. Usually μ, the permeability, is approximately μ_{0}.
Happens when \vec{E} and \vec{B} are small and linear, homogeneous, isotropic material.

$$
\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{E}=0 \\
\vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \times \vec{B}=\mu \epsilon \frac{\partial \vec{B}}{\partial t}
\end{array}\right.
$$

Where the velocity is $\frac{1}{\sqrt{\mu \epsilon}}=\frac{c}{n}$ and $n=\frac{\sqrt{\mu \epsilon}}{\sqrt{\mu_{0} \epsilon_{0}}}$
Usually $\mu \approx \mu_{0}$ if $\epsilon>\epsilon_{0} \rightarrow n>1$ The phase velocity of light in matter is SLOWER Poynting vector:

$$
\frac{1}{\mu} \vec{E} \times \vec{B} \approx \frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

The refraction index, n, may depend on the wave length (or frequency). $\Rightarrow n=n(\omega)$ which is usually decreasing versus wavelength. Example:

$$
\begin{aligned}
\vec{E} & =\vec{E}_{0} \cos (k z-\omega t) \Rightarrow \vec{k}=k \hat{z} \\
\vec{E}_{0} & \perp \vec{k} \quad \forall \text { usually } \mu \approx \mu_{0} \\
\frac{\omega}{k} & =\frac{c}{n}=\frac{c \sqrt{\mu_{0} \epsilon_{0}}}{\sqrt{\mu \epsilon}} \approx \frac{c \sqrt{\epsilon_{0}}}{\sqrt{\epsilon}}=\frac{c}{\sqrt{k_{e}}}
\end{aligned}
$$

Question: What happens when an EM wave passes from one transparent medium to another?

Suppose we have an incident plane wave, with a given $\vec{E}_{0 I}$

$$
\begin{aligned}
& \vec{E}_{I}(\vec{r}, t)=\vec{E}_{0 I} \cos \left(\vec{k}_{I} \cdot \vec{r}-\omega t\right) \\
& \vec{B}_{I}(\vec{r}, t)=\frac{1}{v_{1}}\left(\hat{k}_{I} \times \hat{E}_{I}\right)
\end{aligned}
$$

Reflected wave:

$$
\begin{aligned}
\vec{E}_{R}(\vec{r}, t) & =\vec{E}_{0 R} \cos \left(\vec{k}_{R} \cdot \vec{r}-\omega t\right) \\
\vec{B}_{R}(\vec{r}, t) & =\frac{1}{v_{1}}\left(\hat{k}_{R} \times \hat{E}_{R}\right)
\end{aligned}
$$

where $\vec{E}_{0 R}$ is unknown.
Transmitted wave:

$$
\begin{aligned}
\vec{E}_{T}(\vec{r}, t) & =\vec{E}_{0 T} \cos \left(\vec{k}_{T} \cdot \vec{r}-\omega t\right) \\
\vec{B}_{T}(\vec{r}, t) & =\frac{1}{v_{2}}\left(\hat{k}_{T} \times \hat{E}_{T}\right)
\end{aligned}
$$

where $\vec{E}_{0 T}$ is unknown. We showed before in previous lecture: At the boundary $z=0$
(a) $\vec{k}_{I} \cdot \vec{r}=\vec{k}_{R} \cdot \vec{r}=\vec{k}_{T} \cdot \vec{r}$
(b) $\quad \theta_{I}=\theta_{R}$

$$
\text { (c) } \quad n_{1} \sin \theta_{I}=n_{2} \sin \theta_{T}
$$

Using these criteria: $\vec{E}_{I}+\vec{E}_{R}$ are in medium 1 and \vec{E}_{T} is in medium 2. At $z=0$:

$$
\vec{E}^{(1)}=\vec{E}_{0 I}+\vec{E}_{0 R} \quad \text { and } \quad \vec{E}^{(2)}=\vec{E}_{0 T}
$$

EM wave specific boundary conditions:

1. \perp Direction:

$$
\oint D \cdot d a=0, \quad \vec{\nabla} \cdot \vec{D}=0 \quad \Rightarrow \quad \epsilon_{1} E_{\perp}^{(1)}=\epsilon_{2} E_{\perp}^{(2)}
$$

2. || Direction:

$$
\oint E \cdot d l=-\frac{\mathrm{d}}{\mathrm{dt}} \int B d a, \quad \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial \mathrm{t}}
$$

If we assume that the polariztion of the incident wave is parallel to the plane (x, z) :

Perpendicular direction:
(i) $\epsilon_{1}\left(-E_{0 I} \sin \theta_{I}+E_{0 R} \sin \theta_{I}\right)=-\epsilon_{2} E_{0 T} \sin \theta_{T}$

Parallel direction:

$$
\begin{aligned}
& \text { (iii) } \begin{aligned}
& E_{0 I} \cos \theta_{I}+E_{0 R} \cos \theta_{I}=E_{0 T} \cos \theta_{T} \\
&(i) \Rightarrow\left(E_{0 I}-E_{0 R}\right)=\frac{\epsilon_{2}}{\epsilon_{1}} \frac{\sin \theta_{I}}{\sin \theta_{2}} E_{0 T} \\
&=\frac{\epsilon_{2}}{\epsilon_{1}} \frac{n_{1}}{n_{2}} E_{0 T}=\beta E_{0 T} \\
&(i i i) \Rightarrow\left(E_{0 I}+E_{0 R}\right)=\frac{\cos \theta_{T}}{\cos \theta_{I}} E_{0 T}=\alpha E_{0 T} \\
& \Rightarrow E_{0 R}=\frac{\alpha-\beta}{\alpha+\beta} E_{0 I} \Rightarrow R=\frac{\alpha-\beta}{\alpha+\beta} \\
& E_{0 T}=\frac{2}{\alpha+\beta} E_{0 I} \Rightarrow T=\frac{2}{\alpha+\beta}
\end{aligned}
\end{aligned}
$$

What do we learn from this?
(1.) Normal incidence:

$$
\begin{aligned}
& \alpha=\frac{\cos \theta_{T}}{\cos \theta_{I}}=1 \\
& \text { if } \mu_{1} \approx \mu_{2} \approx \mu_{0} \\
& \Rightarrow \beta=\frac{\epsilon_{2}}{\epsilon_{1}} \frac{n_{1}}{n_{2}}=\frac{n_{2}}{n_{1}} \\
& \Rightarrow R=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} \quad T=\frac{2 n_{1}}{n_{1}+n_{2}}
\end{aligned}
$$

(2.) Grazing incidence:

$$
\begin{aligned}
& \theta_{I} \approx 90^{\circ} \\
& \alpha \rightarrow \infty \\
& R \approx 1, T \approx 0
\end{aligned}
$$

(3.) A very special angle: θ_{B}. Brewster's Angle! When $\alpha=\beta \Rightarrow R=0$ and $T=1$!

$$
\begin{aligned}
& \alpha=\beta \Rightarrow \frac{\cos \theta_{T}}{\cos \theta_{B}}=\frac{n_{2}}{n_{1}}=\frac{\sin \theta_{B}}{\sin \theta_{T}} \\
& \sin \theta_{T} \cos \theta_{T}=\sin \theta_{B} \cos \theta_{B} \\
& \Rightarrow \sin 2 \theta_{T}=\sin 2 \theta_{B} \\
& \Rightarrow 2 \theta_{B}=2 \theta_{T} \therefore n_{1} \sin \theta_{B}=n_{2} \sin \theta_{T} \\
& \text { or } 2 \theta_{B}=\pi-2 \theta_{T} \\
& \Rightarrow \theta_{B}+\theta_{T}=\frac{\pi}{2}
\end{aligned}
$$

If polartzation is in y direction
\rightarrow No Bnewster's angle

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

