
8.03 Lecture 19

*Today: 1. EM waves in matter and 2. Brewster’s Angle.
*Review of Gauss’s Theorem:

Q =
∫

Q
(~∇ · ~A)dτ =

∮
S

~A · ~da

*Review of Stokes’ Theorem:
~V =

∫
S

(~∇× ~A) ~da =
∮

L

~A× ~dl

*Review of Polarization (dipole moment):

P (r) =
∮

V
ρ(r0)(r0 − r)d3r0

*Review of magnetic moment:
M = 1

2

∫
V
r × J dV

We have talked about EM waves in the vacuum. We know how to generate EM waves. Now: we
are interested in EM waves in dielectrics.

1. In perfect conductors: We have unlimited supply of charges. It costs nothing to move them
around.

2. In dielectrics: All charges are attached to specific atoms or molecules. They are bounded.
They can only move a bit within an atom or molecule.

In the presence of an electric field: there is an induced dielectric polarization:

In the presence of the matter, there are bound charges and free charges: ρ = ρf + ρb. Take a look
at the effect of free charge, we define the electric displacement field, ~D:

~D ≡ ε0 ~E + ~P



Where
−∇ · ~P ≡ ρb

and ~P is the electric dipole moment.
Gauss’ Law:

ε0∇ · ~E = ρf + ρb = ρf −∇ · P
⇒ ∇ · ~D = ∇ · (ε0 ~E + ~P ) = ρf

⇒ ∇ · ~D = ρf

~D field is related to the effect of free charge.

Similiary in the presense of the matter, there are bound currents and free currents.

~J = ~Jf + ~Jb + ~Jp

Where the last term is the polarization current.

~H ≡
~B

µ0
− ~M where ~∇× ~M = ~Jb

Where ~H is the demagnetizing field and ~M is the magnetic dipole moment.
Ampere’s Law:

∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)

⇒ 1
µ0

(∇× ~B) = ~Jf + ~∇× ~M︸ ︷︷ ︸
Band Cur.

+

Polarization cur.︷︸︸︷
∂ ~P

∂t
+ε0

∂ ~E

∂t

⇒ ∇×
( 1
µ0

~B − ~M
)

= ~Jf + ∂ ~D

∂t

∇× ~H = ~Jf + ∂ ~D

∂t
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Maxwell’s Equation in matter where there is no free charge (ρf = 0 , ~Jf =0)

~∇ · ~D = 0
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~H = ∂ ~D

∂t

If ~P ∝ ~E ⇒ ~D = ε0 ~E + ~P = ε ~E

If ~M ∝ ~B ⇒ ~H = 1
µ0

~B − ~M =
~B

µ

Where ε ≡ keε0 is the permittivity which goes up. Roughly it can be thought of as the resistance
of forming an electric field. Usually µ, the permeability, is approximately µ0.
Happens when ~E and ~B are small and linear, homogeneous, isotropic material.

~∇ · ~E = 0
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B = µε
∂ ~B

∂t

Where the velocity is 1
√
µε

= c

n
and n =

√
µε

√
µ0ε0

Usually µ ≈ µ0 if ε > ε0 → n > 1 The phase velocity of light in matter is SLOWER
Poynting vector:

1
µ
~E × ~B ≈ 1

µ0
~E × ~B

The refraction index, n, may depend on the wave length (or frequency). ⇒ n = n(ω) which is
usually decreasing versus wavelength. Example:

~E = ~E0 cos(kz − ωt)⇒ ~k = kẑ

~E0 ⊥ ~k ⇓ usually µ ≈ µ0

ω

k
= c

n
=
c
√
µ0ε0√
µε

≈
c
√
ε0√
ε

= c√
ke
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Question: What happens when an EM wave passes from one transparent medium to another?

Suppose we have an incident plane wave, with a given ~E0I

~EI(~r, t) = ~E0I cos(~kI · ~r − ωt)

~BI(~r, t) = 1
v1

(k̂I × ÊI)

Reflected wave:

~ER(~r, t) = ~E0R cos(~kR · ~r − ωt)

~BR(~r, t) = 1
v1

(k̂R × ÊR)

where ~E0R is unknown.
Transmitted wave:

~ET (~r, t) = ~E0T cos(~kT · ~r − ωt)

~BT (~r, t) = 1
v2

(k̂T × ÊT )

where ~E0T is unknown. We showed before in previous lecture:
At the boundary z = 0

(a) ~kI · ~r = ~kR · ~r = ~kT · ~r

(b) θI = θR
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(c) n1 sin θI = n2 sin θT

Using these criteria: ~EI + ~ER are in medium 1 and ~ET is in medium 2. At z = 0:

~E(1) = ~E0I + ~E0R and ~E(2) = ~E0T

EM wave specific boundary conditions:

1. ⊥ Direction: ∮
D · da = 0, ~∇ · ~D = 0 ⇒ ε1E

(1)
⊥ = ε2E

(2)
⊥

2. ‖ Direction: ∮
E · dl = − d

dt

∫
B da, ~∇× ~E = −∂

~B

∂t

If we assume that the polariztion of the incident wave is parallel to the plane (x, z):
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Perpendicular direction:

(i) ε1(−E0I sin θI + E0R sin θI) = −ε2E0T sin θT

Parallel direction:
(iii) E0I cos θI + E0R cos θI = E0T cos θT

(i)⇒ (E0I − E0R) = ε2
ε1

sin θI

sin θ2
E0T

= ε2
ε1

n1
n2
E0T = βE0T

(iii)⇒ (E0I + E0R) = cos θT

cos θI
E0T = αE0T

⇒ E0R = α− β
α+ β

E0I ⇒ R = α− β
α+ β

E0T = 2
α+ β

E0I ⇒ T = 2
α+ β

What do we learn from this?
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(1.) Normal incidence:

α = cos θT

cos θI
= 1

if µ1 ≈ µ2 ≈ µ0

⇒ β = ε2
ε1

n1
n2

= n2
n1

⇒ R = n1 − n2
n1 + n2

T = 2n1
n1 + n2

(2.) Grazing incidence:

θI ≈ 90◦

α→∞
R ≈ 1 , T ≈ 0

(3.) A very special angle: θB. Brewster’s Angle! When α = β ⇒ R = 0 and T = 1!

α = β ⇒ cos θT

cos θB
= n2
n1

= sin θB

sin θT

sin θT cos θT = sin θB cos θB

⇒ sin 2θT = sin 2θB

⇒ 2θB = 2θT ∴ n1 sin θB = n2 sin θT

or 2θB = π − 2θT

⇒ θB + θT = π
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