8.03 Lecture 22

We learned the interference of two EM waves to N EM waves.

We call the interference of infinite number of EM waves "diffraction".

We have ∞ point like spherical EM wave sources. This situation: we will see the "interference" between all the spherical wave sources. We call it "diffraction".

Feynman: No one has ever been able to define the difference between interference and diffracdion satisfactorily. It is just a question of usage.

What is the resulting intensity pattern?

\langle Method I \rangle

Reminder: N-slit interference:

$$
\langle I\rangle \propto\left[\frac{\sin \left(\frac{N \delta}{2}\right)}{\sin \left(\frac{\delta}{2}\right)}\right]^{2}
$$

Where δ is the phase difference between near-by slits: $\delta=\frac{d \sin \theta}{\lambda} 2 \pi$

Consider the limit:

$$
\begin{array}{cc}
d \longrightarrow 0 & N \longrightarrow \infty \quad N d=D \\
\Rightarrow \delta \longrightarrow 0 & N \delta=\frac{D \sin \theta}{\lambda} 2 \pi \\
\langle I\rangle \propto & {\left[\frac{\sin \left(\frac{N \delta}{2}\right)}{\sin \left(\frac{\delta}{2}\right)}\right]^{2}}
\end{array}
$$

We can define:

$$
\begin{aligned}
& \beta=\frac{N \delta}{2}=\frac{\pi D \sin \theta}{\lambda} \\
& \Rightarrow\langle I\rangle \propto\left[\frac{\sin \beta}{\beta}\right]^{2}
\end{aligned}
$$

Here we also assume that the intensity of individual point source is proportional to N^{-2}.

〈 Method II \rangle
Another method described in Georgi's book: Do an integration over all point-like sources to calculate the total electric field

$$
C\left(k_{x}, k_{y}\right)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y f(x, y) e^{-i \vec{k} \cdot \vec{r}(x, y)}
$$

Where C is proportional to the total electric field. The integrals are over the unite area of the point source and f is the shape of the sources. This is the Fourier transform of $f(x, y)$ Let's consider a single slit experiment

$$
\begin{gathered}
f(x, y)=\left\{\begin{array}{l}
1 \text { if } \frac{-D}{2} \leq x \leq \frac{D}{2} \\
0 \text { if }|x|>\frac{D}{2}
\end{array}\right. \\
C\left(k_{x}, k_{y}\right)=\frac{1}{4 \pi^{2}} \int_{-D / 2}^{D / 2} e^{-i k_{x} x} d x \int_{-\infty}^{\infty} e^{-i k_{y} y} d y \\
=\left.\delta\left(k_{y}\right) \frac{1}{2 \pi} \frac{1}{-i k_{x}} e^{-i k_{x} x}\right|_{-D / 2} ^{D / 2} \\
=\delta\left(k_{y}\right) \frac{1}{2 \pi} \frac{1}{-i k_{x}}\left[e^{-i k D / 2}-e^{+i k D / 2}\right] \\
=\delta\left(k_{y}\right) \frac{1}{2 \pi} \frac{2 \sin k_{x} D / 2}{k_{x}}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& |\vec{E}| \propto C \propto \frac{\sin k_{x} D / 2}{k_{x}} \\
& \quad I \propto|C|^{2} \propto \frac{\sin ^{2} k_{x} D / 2}{k_{x}} \\
& \text { since } \frac{x}{r}=\frac{k_{x}}{k}=\frac{k_{x} \lambda}{2 \pi}=\sin \theta
\end{aligned}
$$

$$
\Rightarrow k_{x}=\frac{2 \pi \sin \theta}{\lambda}
$$

$$
\Rightarrow I \propto \frac{\sin ^{2}\left(\frac{\pi D}{\lambda} \sin \theta\right)}{\left(\frac{\pi D}{\lambda} \sin \theta\right)^{2}}
$$

$$
\text { Define } \beta \equiv \frac{\pi D \sin \theta}{\lambda}
$$

$$
\langle I\rangle \propto\left[\frac{\sin \beta}{\beta}\right]^{2}
$$

Same result as method I!

Observation:
(1) If we increase the size of the slit D:
\Rightarrow the width decreases!

EM waves:

(2) Distance between peaks $\propto \lambda$

Principle Maximum \Rightarrow The width is larger for red light (longer wave length) than blue light (shorter wave length).
(3) Intensity decreases quickly $\propto \frac{1}{\beta^{2}}$ as a function of $\beta($ or $\sin \theta)$ if D is large. On the other hand: if D is smaller, intensity decreases slower.

Coming back to the double-slit experiment: make it even more realistic: include the effect from finite slit width:

Mati-sitit interfere patten modulated by the diffraction pattern
D very small

D large

$$
\begin{aligned}
& I=I_{0}(\underbrace{\frac{\sin \beta}{\beta}}_{\text {Diffraction }})^{2}(\underbrace{\frac{\sin \frac{N \delta}{2}}{\sin \frac{\delta}{2}}}_{\text {Multi-slit interference }})^{2} \\
& \beta=\frac{\pi D}{\lambda} \sin \theta \quad \delta=k d \sin \theta=\frac{2 \pi d \sin \theta}{\lambda}
\end{aligned}
$$

Let's consider a pin hole or aperture:

One can do the integration and we found that the intensity is:

$$
I(\theta)=I_{0}\left(\frac{J_{1}(\beta)}{\beta}\right)^{2}
$$

Where J_{1} is a Bessel function of the first kind:
Solve:

$$
\begin{gathered}
J_{1}(x)=0 \Rightarrow x \approx 3.83 \\
\Rightarrow \beta=3.83=\frac{\pi D}{\lambda} \sin \theta \\
\Rightarrow \sin \theta \approx 1.22 \frac{\lambda}{D}
\end{gathered}
$$

And so the resolution of a pin hole:

$$
\sin \Delta \theta \approx \Delta \theta=1.22 \frac{\lambda}{D}
$$

Such that we can separate the two peaks! Human pupil is $2-4 \mathrm{~mm}$ when narrow and $3-8 \mathrm{~mm}$ when wide. Take visible light which is around $500 \mathrm{~nm} . D \sim 5 \mathrm{~mm}$. Resolution:

$$
\sim 1.22 \frac{\lambda}{D} \sim 1.22 \frac{5 \cdot 10^{-7}}{5 \cdot 10^{-3}} \sim 1.22 \cdot 10^{-4}
$$

iPhone 7: 401 ppi

$$
\begin{gathered}
\Delta x \sim \frac{2.54 \mathrm{~cm}}{401} \sim 6.3 \times 10^{-3} \mathrm{~cm} \\
\Delta \theta \sim \frac{\Delta x}{10 \mathrm{~cm}} \sim 3 \times 10^{-4}
\end{gathered}
$$

The human eye can resolve it! Will you buy the iPhone x with $40,000 \mathrm{ppi}$? If Apple put 2,000 pixels in $6 \mathrm{~cm} \sim$ the limit.

We have learned single slit diffraction.

$$
I=I_{0}\left(\frac{\sin \beta}{\beta}\right)^{2} \quad \beta=\frac{\pi D \sin \theta}{\lambda}
$$

This means that a laser pointer is not merely producing a pencil beam.

Suppose $\lambda=500 \mathrm{~nm}=5 \times 10^{-7} \mathrm{~m}$ and $D=1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m}$.

Opening angle:

$$
\theta \approx 1.22 \frac{\lambda}{D}=6 \times 10^{-4}
$$

If we shoot a laser to moon: $L=4 \times 10^{8} \mathrm{~m}$ the radius of the principle maxima is 240 km !!

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

