
Chapter 1 

Harmonic Oscillation 

Oscillators are the basic building blocks of waves. We begin by discussing the harmonic 
oscillator. We will identify the general principles that make the harmonic oscillator so spe-
cial and important. To make use of these principles, we must introduce the mathematical 
device of complex numbers. But the advantage of introducing this mathematics is that we 
can understand the solution to the harmonic oscillator problem in a new way. We show that 
the properties of linearity and time translation invariance lead to solutions that are complex 
exponential functions of time. 

Preview 

In this chapter, we discuss harmonic oscillation in systems with only one degree of freedom. 

1. We begin with a review of the simple harmonic oscillator, noting that the equation of 
motion of a free oscillator is linear and invariant under time translation; 

2. We discuss linearity in more detail, arguing that it is the generic situation for small 
oscillations about a point of stable equilibrium; 

3. We discuss time translation invariance of the harmonic oscillator, and the connection 
between harmonic oscillation and uniform circular motion; 

4. We introduce complex numbers, and discuss their arithmetic; 

5. Using complex numbers, we find solutions to the equation of motion for the harmonic 
oscillator that behave as simply as possible under time translations. We call these 
solutions “irreducible.” We show that they are actually complex exponentials. 

6. We discuss an LC circuit and draw an analogy between it and a system of a mass and 
springs. 
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2 CHAPTER 1. HARMONIC OSCILLATION 

7. We discuss units. 

8. We give one simple example of a nonlinear oscillator. 

1.1 The Harmonic Oscillator 

When you studied mechanics, you probably learned about the harmonic oscillator. We will 
begin our study of wave phenomena by reviewing this simple but important physical system. 
Consider a block with mass, m, free to slide on a frictionless air-track, but attached to a light1 

Hooke’s law spring with its other end attached to a fixed wall. A cartoon representation of 
this physical system is shown in figure 1.1. 
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Figure 1.1: A mass on a spring. 

This system has only one relevant degree of freedom. In general, the number of de-
grees of freedom of a system is the number of coordinates that must be specified in order 
to determine the configuration completely. In this case, because the spring is light, we can 
assume that it is uniformly stretched from the fixed wall to the block. Then the only important 
coordinate is the position of the block. 

In this situation, gravity plays no role in the motion of the block. The gravitational force 
is canceled by a vertical force from the air track. The only relevant force that acts on the 
block comes from the stretching or compression of the spring. When the spring is relaxed, 
there is no force on the block and the system is in equilibrium. Hooke’s law tells us that 
the force from the spring is given by a negative constant, −K, times the displacement of the 
block from its equilibrium position. Thus if the position of the block at some time is x and 
its equilibrium position is x0, then the force on the block at that moment is 

F = −K(x − x0) . (1.1) 

1“Light” here means that the mass of the spring is small enough to be ignored in the analysis of the motion 
of the block. We will explain more precisely what this means in chapter 7 when we discuss waves in a massive 
spring. 
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The constant, K, is called the “spring constant.” It has units of force per unit distance, or 
MT −2 in terms of M (the unit of mass), L (the unit of length) and T (the unit of time). We 
can always choose to measure the position, x, of the block with our origin at the equilibrium 
position. If we do this, then x0 = 0 in (1.1) and the force on the block takes the simpler form 

F = −Kx . (1.2) 

Harmonic oscillation results from the interplay between the Hooke’s law force and New-
ton’s law, F = ma. Let x(t) be the displacement of the block as a function of time, t. Then 
Newton’s law implies 

d2 

m x(t) = −K x(t) . (1.3)
dt2 

An equation of this form, involving not only the function x(t), but also its derivatives is called 
a “differential equation.” The differential equation, (1.3), is the “equation of motion” for the 
system of figure 1.1. Because the system has only one degree of freedom, there is only one 
equation of motion. In general, there must be one equation of motion for each independent 
coordinate required to specify the configuration of the system. 

The most general solution to the differential equation of motion, (1.3), is a sum of a 
constant times cos ωt plus a constant times sin ωt, 

x(t) = a cos ωt + b sin ωt , (1.4) 

where 

ω ≡ 

s 
K 

(1.5) 
m 

is a constant with units of T −1 called the “angular frequency.” The angular frequency will be 
a very important quantity in our study of wave phenomena. We will almost always denote it 
by the lower case Greek letter, ω (omega). 

Because the equation involves a second time derivative but no higher derivatives, the 
most general solution involves two constants. This is just what we expect from the physics, 
because we can get a different solution for each value of the position and velocity of the 
block at the starting time. Generally, we will think about determining the solution in terms 
of the position and velocity of the block when we first get the motion started, at a time that 
we conventionally take to be t = 0. For this reason, the process of determining the solution 
in terms of the position and velocity at a given time is called the “initial value problem.” 
The values of position and velocity at t = 0 are called initial conditions. For example, we 
can write the most general solution, (1.4), in terms of x(0) and x0(0), the displacement and 
velocity of the block at time t = 0. Setting t = 0 in (1.4) gives a = x(0). Differentiating and 
then setting t = 0 gives b = ω x0(0). Thus 

1 
x(t) = x(0) cos ωt + x 0(0) sin ωt . (1.6)

ω 
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For example, suppose that the block has a mass of 1 kilogram and that the spring is 0.5 
meters long2 with a spring constant K of 100 newtons per meter. To get a sense of what 
this spring constant means, consider hanging the spring vertically (see problem (1.1)). The 
gravitational force on the block is 

mg ≈ 9.8 newtons . (1.7) 

In equilibrium, the gravitational force cancels the force from the spring, thus the spring is 
stretched by 

mg ≈ 0.098 meters = 9.8 centimeters . (1.8)
K 

For this mass and spring constant, the angular frequency, ω, of the system in figure 1.1 is 
s 

K 
s 

100 N/m 1 
ω = = = 10 . (1.9)

M 1 kg s 

If, for example, the block is displaced by 0.01 m (1 cm) from its equilibrium position and 
released from rest at time, t = 0, the position at any later time t is given (in meters) by 

x(t) = 0.01 × cos 10t . (1.10) 

The velocity (in meters per second) is 

x 0(t) = −0.1 × sin 10t . (1.11) 

The motion is periodic, in the sense that the system oscillates — it repeats the same motion 
over and over again indefinitely. After a time 

2π 
τ = ≈ 0.628 s (1.12)

ω 

the system returns exactly to where it was at t = 0, with the block instantaneously at rest 
with displacement 0.01 meter. The time, τ (Greek letter tau) is called the “period” of the 
oscillation. However, the solution, (1.6), is more than just periodic. It is “simple harmonic” 
motion, which means that only a single frequency appears in the motion. 

The angular frequency, ω, is the inverse of the time required for the phase of the wave to 
change by one radian. The “frequency”, usually denoted by the Greek letter, ν (nu), is the 
inverse of the time required for the phase to change by one complete cycle, or 2π radians, 
and thus get back to its original state. The frequency is measured in hertz, or cycles/second. 
Thus the angular frequency is larger than the frequency by a factor of 2π, 

ω (in radians/second) = 2π (radians/cycle) · ν (cycles/second) . (1.13) 

2The length of the spring plays no role in the equations below, but we include it to allow you to build a mental 
picture of the physical system. 

http:x(t)=0.01


5 1.2. SMALL OSCILLATIONS AND LINEARITY 

The frequency, ν, is the inverse of the period, τ , of (1.12), 

1 
ν = . (1.14)

τ 

Simple harmonic motion like (1.6) occurs in a very wide variety of physical systems. The 
question with which we will start our study of wave phenomena is the following: Why do 
solutions of the form of (1.6) appear so ubiquitously in physics? What do harmonically 
oscillating systems have in common? Of course, the mathematical answer to this question 
is that all of these systems have equations of motion of essentially the same form as (1.3). 
We will find a deeper and more physical answer that we will then be able to generalize to 
more complicated systems. The key features that all these systems have in common with the 
mass on the spring are (at least approximate) linearity and time translation invariance of the 
equations of motion. It is these two features that determine oscillatory behavior in systems 
from springs to inductors and capacitors. 

Each of these two properties is interesting on its own, but together, they are much more 
powerful. They almost completely determine the form of the solutions. We will see that if 
the system is linear and time translation invariant, we can always write its motion as a sum 
of simple motions in which the time dependence is either harmonic oscillation or exponential 
decay (or growth). 

1.2 Small Oscillations and Linearity 

A system with one degree of freedom is linear if its equation of motion is a linear function 
of the coordinate, x, that specifies the system’s configuration. In other words, the equation of 
motion must be a sum of terms each of which contains at most one power of x. The equation 
of motion involves a second derivative, but no higher derivatives, so a linear equation of 
motion has the general form: 

d2 d 
α x(t) + β x(t) + γ x(t) = f(t) . (1.15)

dt2 dt 

If all of the terms involve exactly one power of x, the equation of motion is “homogeneous.” 
Equation (1.15) is not homogeneous because of the term on the right-hand side. The “in-
homogeneous” term, f(t), represents an external force. The corresponding homogeneous 
equation would look like this: 

d2 d 
α x(t) + β x(t) + γ x(t) = 0 . (1.16)

dt2 dt 

In general, α, β and γ as well as f could be functions of t. However, that would break 
the time translation invariance that we will discuss in more detail below and make the system 



6 CHAPTER 1. HARMONIC OSCILLATION 

much more complicated. We will almost always assume that α, β and γ are constants. The 
equation of motion for the mass on a spring, (1.3), is of this general form, but with β and f 
equal to zero. As we will see in chapter 2, we can include the effect of frictional forces by 
allowing nonzero β, and the effect of external forces by allowing nonzero f . 

The linearity of the equation of motion, (1.15), implies that if x1(t) is a solution for 
external force f1(t), 

d2 d 
α x1(t) + β x1(t) + γ x1(t) = f1(t) , (1.17)

dt2 dt 

and x2(t) is a solution for external force f2(t), 

d2 d 
α x2(t) + β x2(t) + γ x2(t) = f2(t) , (1.18)

dt2 dt 

then the sum, 
x12(t) = Ax1(t) + B x2(t) , (1.19) 

for constants A and B is a solution for external force Af1 + Bf2, 

d2 d 
α x12(t) + β x12(t) + γ x12(t) = Af1(t) + Bf2(t) . (1.20)

dt2 dt 

The sum x12(t) is called a “linear combination” of the two solutions, x1(t) and x2(t). In 
the case of “free” motion, which means motion with no external force, if x1(t) and x2(t) are 
solutions, then the sum, Ax1(t) + B x2(t) is also a solution. 

The most general solution to any of these equations involves two constants that must be 
fixed by the initial conditions, for example, the initial position and velocity of the particle, as 
in (1.6). It follows from (1.20) that we can always write the most general solution for any 
external force, f(t), as a sum of the “general solution” to the homogeneous equation, (1.16), 
and any “particular” solution to (1.15). 

No system is exactly linear. “Linearity” is never exactly “true.” Nevertheless, the idea of 
linearity is extremely important, because it is a useful approximation in a very large number 
of systems, for a very good physical reason. In almost any system in which the properties are 
smooth functions of the positions of the parts, the small displacements from equilibrium pro-
duce approximately linear restoring forces. The difference between something that is “true” 
and something that is a useful approximation is the essential difference between physics and 
mathematics. In the real world, the questions are much too interesting to have answers 
that are exact. If you can understand the answer in a well-defined approximation, you 
have learned something important. 

To see the generic nature of linearity, consider a particle moving on the x-axis with po-
tential energy, V (x). The force on the particle at the point, x, is minus the derivative of the 
potential energy, 

F = − 
d

V (x) . (1.21)
dx 
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A force that can be derived from a potential energy in this way is called a “conservative” 
force. 

At a point of equilibrium, x0, the force vanishes, and therefore the derivative of the 
potential energy vanishes: 

d 
F = − V (x)| = −V 0(x0) = 0 . (1.22)

dx x=x0 

We can describe the small oscillations of the system about equilibrium most simply if we 
redefine the origin so that x0 = 0. Then the displacement from equilibrium is the coordinate 
x. We can expand the force in a Taylor series: 

1 
F (x) = −V 0(x) = −V 0(0) − xV 00(0) − x 2 V 000(0) + · · · (1.23)

2

The first term in (1.23) vanishes because this system is in equilibrium at x = 0, from (1.22). 
The second term looks like Hooke’s law with 

K = V 00(0) . (1.24) 

The equilibrium is stable if the second derivative of the potential energy is positive, so that 
x = 0 is a local minimum of the potential energy. 

The important point is that for sufficiently small x, the third term in (1.23), and all 
subsequent terms will be much smaller than the second. The third term is negligible if 

¯̄
xV 000(0)

¯̄
 ¿ V 00(0) . (1.25) 

Typically, each extra derivative will bring with it a factor of 1/L, where L is the distance over 
which the potential energy changes by a large fraction. Then (1.25) becomes 

x ¿ L . (1.26) 

There are only two ways that a force derived from a potential energy can fail to be approxi-
mately linear for sufficiently small oscillations about stable equilibrium: 

1. If the potential is not smooth so that the first or second derivative of the potential is not 
well defined at the equilibrium point, then we cannot do a Taylor expansion and the 
argument of (1.23) does not work. We will give an example of this kind at the end of 
this chapter. 

2. Even if the derivatives exist at the equilibrium point, x = 0, it may happen that 
V 00(0) = 0. In this case, to have a stable equilibrium, we must have V 000(0) = 0 
as well, otherwise a small displacement in one direction or the other would grow with 
time. Then the next term in the Taylor expansion dominates at small x, giving a force 

3proportional to x . 
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Figure 1.2: The potential energy of (1.27). 

Both of these exceptional cases are very rare in nature. Usually, the potential energy is a 
smooth function of the displacement and there is no reason for V 00(0) to vanish. The generic 
situation is that small oscillations about stable equilibrium are linear. 

An example may be helpful. Almost any potential energy function with a point of stable 
equilibrium will do, so long as it is smooth. For example, consider the following potential 
energy µ 

L x 
¶

V (x) = E + . (1.27) 
x L
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This is shown in figure 1.2. The minimum (at least for positive x) occurs at x = L, so we 
first redefine x = X + L, so that 

µ 
L X + L

¶
V (X) = E + . (1.28)

X + L L 

The corresponding force is 
µ 

L 1 
¶

F (X) = E − . (1.29)
(X + L)2 L

we can look near X = 0 and expand in a Taylor series: 
¶2 

F (X) = −2
E 

µ 
X 

¶ 

+ 3
E 

µ 
X 

+ · · · (1.30)
L L L L 

Now, the ratio of the first nonlinear term to the linear term is 

3X 
, (1.31)

2L 
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which is small if X ¿ L. 
In other words, the closer you are to the equilibrium point, the closer the actual potential 

energy is to the parabola that we would expect from the potential energy for a linear, Hooke’s 
law force. You can see this graphically by blowing up a small region around the equilibrium 
point. In figure 1.3, the dotted rectangle in figure 1.2 has been blown up into a square. Note 
that it looks much more like a parabola than figure 1.3. If we repeated the procedure and 
again expanded a small region about the equilibrium point, you would not be able to detect 
the cubic term by eye. 

2.1E 

2E 

Figure 1.3: The small dashed rectangle in figure 1.2 expanded. 

Often, the linear approximation is even better, because the term of order x2 vanishes by 
symmetry. For example, when the system is symmetrical about x = 0, so that V (x) = 

nV (−x), the order x3 term (and all x for n odd) in the potential energy vanishes, and then 
there is no order x2 term in the force. 

For a typical spring, linearity (Hooke’s law) is an excellent approximation for small dis-
placements. However, there are always nonlinear terms that become important if the dis-
placements are large enough. Usually, in this book we will simply stick to small oscillations 
and assume that our systems are linear. However, you should not conclude that the subject 
of nonlinear systems is not interesting. In fact, it is a very active area of current research in 
physics. 

1.3 Time Translation Invariance 

1.3.1 Uniform Circular Motion 

.........................................................................................
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When α, β and γ in (1.15) do not depend on the time, t, and in the absence of an external 
force, that is for free motion, time enters in (1.15) only through derivatives. Then the equation 
of motion has the form. 

d2 d 
α x(t) + β x(t) + γ x(t) = 0 . (1.32)

dt2 dt 

The equation of motion for the undamped harmonic oscillator, (1.3), has this form with α = 
m, β = 0 and γ = K. Solutions to (1.32) have the property that 

If x (t) is a solution, x(t + a) will be a solution also. (1.33) 

Mathematically, this is true because the operations of differentiation with respect to time and 
replacing t → t + a can be done in either order because of the chain rule 

d 
(t + a)

¸ · 
d 0)

¸ · 
d 0)

¸
x(t + a) = 

· 
d

x(t = x(t . (1.34)
dt dt dt0 t0=t+a dt0 t0=t+a 

The physical reason for (1.33) is that we can change the initial setting on our clock and the 
physics will look the same. The solution x(t + a) can be obtained from the solution x(t) by 
changing the clock setting by a. The time label has been “translated” by a. We will refer to 
the property, (1.33), as time translation invariance. 

Most physical systems that you can think of are time translation invariant in the absence 
of an external force. To get an oscillator without time translation invariance, you would have 
to do something rather bizarre, such as somehow making the spring constant depend on time. 

For the free motion of the harmonic oscillator, although the equation of motion is cer-
tainly time translation invariant, the manifestation of time translation invariance on the solu-
tion, (1.6) is not as simple as it could be. The two parts of the solution, one proportional to 
cos ωt and the other to sin ωt, get mixed up when the clock is reset. For example, 

cos [ω(t + a)] = cos ωa cos ωt − sin ωa sin ωt . (1.35) 

It will be very useful to find another way of writing the solution that behaves more simply 
under resetting of the clocks. To do this, we will have to work with complex numbers. 

To motivate the introduction of complex numbers, we will begin by exhibiting the relation 
between simple harmonic motion and uniform circular motion. Consider uniform circular 
motion in the x-y plane around a circle centered at the origin, x = y = 0, with radius R and 
with clockwise velocity v = Rω. The x and y coordinates of the motion are 

x(t) = R cos(ωt − φ) , y(t) = −R sin(ωt − φ) , (1.36) 

where φ is the counterclockwise angle in radians of the position at t = 0 from the positive x 
axis. The x(t) in (1.36) is identical to the x(t) in (1.6) with 

x(0) = R cos φ , x 0(0) = ωR sin φ . (1.37) 
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Simple harmonic motion is equivalent to one component of uniform circular motion. This 
relation is illustrated in figure 1.4 and in program 1-1 on the programs disk. As the point 
moves around the circle at constant velocity, Rω, the x coordinate executes simple harmonic 
motion with angular velocity ω. If we wish, we can choose the two constants required to fix 
the solution of (1.3) to be R and φ, instead of x(0) and x0(0). In this language, the action of 
resetting of the clock is more transparent. Resetting the clock changes the value of φ without 
changing anything else. 

q q q q qq qq qq q
q q
q q

qqq q
q @ q
q @ q
q qq @@qRq qq q q q q 

��Rωqq q q q q q q q q q q q q q qq 

Figure 1.4: The relation between uniform circular motion and simple harmonic motion. 

But we would like even more. The key idea is that linearity allows us considerable 
freedom. We can add solutions of the equations of motion together and multiply them by 
constants, and the result is still a solution. We would like to use this freedom to choose 
solutions that behave as simply as possible under time translations. 

The simplest possible behavior for a solution z(t) under time translation is 

z(t + a) = h(a) z(t) . (1.38) 

That is, we would like find a solution that reproduces itself up to an overall constant, h(a) 
when we reset our clocks by a. Because we are always free to multiply a solution of a 
homogeneous linear equation of motion by a constant, the change from z(t) to h(a) z(t) 
doesn’t amount to much. We will call a solution satisfying (1.38) an “irreducible3 solution” 
with respect to time translations, because its behavior under time translations (resettings of 
the clock) is as simple as it can possibly be. 

It turns out that for systems whose equations of motion are linear and time translation 
invariant, as we will see in more detail below, we can always find irreducible solutions that 

3The word “irreducible” is borrowed from the theory of group representations. In the language of group 
theory, the irreducible solution is an “irreducible representation of the translation group.” It just means “as simple 
as possible.” 
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have the property, (1.38). However, for simple harmonic motion, this requires complex num-
bers. You can see this by noting that changing the clock setting by π/ω just changes the sign 
of the solution with angular frequency ω, because both the cos and sin terms change sign: 

cos(ωt + π) = − cos ωt , sin(ωt + π) = − sin ωt . (1.39) 

But then from (1.38) and (1.39), we can write 

−z(t) = z(t + π/ω) = z(t + π/2ω + π/2ω) 
(1.40) 

= h(π/2ω) z(t + π/2ω) = h(π/2ω)2 z(t) . 

Thus we cannot find such a solution unless h(π/2ω) has the property 

[h(π/2ω)]2 = −1 . (1.41) 

The square of h(π/2ω) is −1! Thus we are forced to consider complex numbers.4 When 
we finish introducing complex numbers, we will come back to (1.38) and show that we can 
always find solutions of this form for systems that are linear and time translation invariant. 

1.4 Complex Numbers 

The square root of −1, called i, is important in physics and mathematics for many reasons. 
Measurable physical quantities can always be described by real numbers. You never get a 
reading of i meters on your meter stick. However, we will see that when i is included along 
with real numbers and the usual arithmetic operations (addition, subtraction, multiplication 
and division), then algebra, trigonometry and calculus all become simpler. While complex 
numbers are not necessary to describe wave phenomena, they will allow us to discuss them 
in a simpler and more insightful way. 

1.4.1 Some Definitions 

An imaginary number is a number of the form i times a real number. 
A complex number, z, is a sum of a real number and an imaginary number: z = a + ib. 
The real and “imaginary” parts , Re (z) and Im (z), of the complex number z = a + ib: 

Re (z) = a , Im (z) = b . (1.42) 

4The connection between complex numbers and uniform circular motion has been exploited by Richard Feyn-
man in his beautiful little book, QED. 
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Note that the imaginary part is actually a real number, the real coefficient of i in z = a + ib. 
∗The complex conjugate, z , of the complex number z, is obtained by changing the sign 

of i: 
∗ z = a − ib . (1.43) 

Note that Re (z) = (z + z ∗)/2 and Im (z) = (z − z ∗)/2i . 
The complex plane: Because a complex number z is specified by two real numbers, it 

can be thought of as a two-dimensional vector, with components (a, b). The real part of z, 
a = Re (z), is the x component and the imaginary part of z, b = Im (z), is the y component. 
The diagrams in figures 1.5 and 1.6 show two vectors in the complex plane along with the 
corresponding complex numbers: 

The absolute value, |z|, of z, is the length of the vector (a, b): 

√ ∗|z| = 
p

a2 + b2 = z z . (1.44) 

The absolute value |z| is always a real, non-negative number. 

6 

2 + i ↔ (2, 1)
* 

©©©©©©©©©©

θ = arg(2 + i) = arctan(1/2) 
-

Figure 1.5: A vector with positive real part in the complex plane. 

The argument or phase, arg(z), of a nonzero complex number z, is the angle, in radians, 
of the vector (a, b) counterclockwise from the x axis: 

arctan(b/a) for a ≥ 0 ,
arg(z) = (1.45) 

arctan(b/a) + π for a < 0 . 

⎧
⎪

⎩
⎨
⎪
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Like any angle, arg(z) can be redefined by adding a multiple of 2π radians or 360◦ (see 
figure 1.5 and 1.6). 

6 

. 
. 

.θ = arg(−1.5 − 2i) . 
. 

= arctan(4/3) + π 
.......................... . .............. 
. .............. 

. .
.
.

. arctan(4/3)
............. . 

.........
.... 

. 
. .............. 

........

..... . 
. . -............. 

. 
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.....¶ 

¶ 
¶ 

¶ 
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¶ 
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¶ 
¶/ 

−1.5 − 2i ↔ (−1.5, −2) 

Figure 1.6: A vector with negative real part in the complex plane. 

1.4.2 Arithmetic 

.............................
...............................................................................
........
............................................................................................................................................ 1-2..... ... .. 

The arithmetic operations addition, subtraction and multiplication on complex numbers are 
defined by just treating the i like a variable in algebra, using the distributive law and the 

0relation i2 = −1. Thus if z = a + ib and z = a0 + ib0, then 

z + z 0 = (a + a 0) + i(b + b0) , 

z − z0 = (a − a0) + i(b − b0) , (1.46) 

zz0 = (aa0 − bb0) + i(ab0 + ba0) . 

For example: 

(3 + 4i) + (−2 + 7i) = (3 − 2) + (4 + 7)i = 1 + 11i , (1.47) 

(3 + 4i) · (5 + 7i) = (3 · 5 − 4 · 7) + (3 · 7 + 4 · 5)i = −13 + 41i . (1.48) 

It is worth playing with complex multiplication and getting to know the complex plane. 
At this point, you should check out program 1-2. 
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Division is more complicated. To divide a complex number z by a real number r is easy, 
just divide both the real and the imaginary parts by r to get z/r = a/r + ib/r. To divide 

0∗ 0by a complex number, z0, we can use the fact that z z = |z0|2 is real. If we multiply the 
numerator and the denominator of z/z0 by z0∗, we can write: 

z/z0 = z 0∗z/|z 0|2 = (aa 0 + bb0)/(a 02 + b02) + i(ba0 − ab0)/(a 02 + b02) . (1.49) 

For example: 

(3 + 4i)/(2 + i) = (3 + 4i) · (2 − i)/5 = (10 + 5i)/5 = 2 + i . (1.50) 

With these definitions for the arithmetic operations, the absolute value behaves in a very 
simple way under multiplication and division. Under multiplication, the absolute value of a 
product of two complex numbers is the product of the absolute values: 

|z z 0| = |z| |z 0| . (1.51) 

Division works the same way so long as you don’t divide by zero: 

0|z/z0| = |z|/|z 0| if z 6= 0 . (1.52) 

Mathematicians call a set of objects on which addition and multiplication are defined 
and for which there is an absolute value satisfying (1.51) and (1.52) a division algebra. It 
is a peculiar (although irrelevant, for us) mathematical fact that the complex numbers are 
one of only four division algebras, the others being the real numbers and more bizarre things 
called quaternions and octonians obtained by relaxing the requirements of commutativity and 
associativity (respectively) of the multiplication laws. 

The wonderful thing about the complex numbers from the point of view of algebra is that 
all polynomial equations have solutions. For example, the equation x2 − 2x + 5 = 0 has 
no solutions in the real numbers, but has two complex solutions, x = 1 ± 2i. In general, an 
equation of the form p(x) = 0, where p(x) is a polynomial of degree n with complex (or 
real) coefficients has n solutions if complex numbers are allowed, but it may not have any if 
x is restricted to be real. 

Note that the complex conjugate of any sum, product, etc, of complex numbers can be 
obtained simply by changing the sign of i wherever it appears. This implies that if the poly-
nomial p(z) has real coefficients, the solutions of p(z) = 0 come in complex conjugate pairs. 
That is, if p(z) = 0, then p(z ∗) = 0 as well. 

1.4.3 Complex Exponentials 

Consider a complex number z = a + ib with absolute value 1. Because |z| = 1 implies 
a2 + b2 = 1, we can write a and b as the cosine and sine of an angle θ. 

z = cos θ + i sin θ for |z| = 1 . (1.53) 
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Because 

tan θ = 
sin θ 
cos θ 

= 
b 
a 

(1.54) 

the angle θ is the argument of z: 

arg(cos θ + i sin θ) = θ . (1.55) 

Let us think about z as a function of θ and consider the calculus. The derivative with 
respect to θ is: 

∂ 
(cos θ + i sin θ) = − sin θ + i cos θ = i(cos θ + i sin θ) (1.56)

∂θ 

A function that goes into itself up to a constant under differentiation is an exponential. In 
∂particular, if we had a function of θ, f(θ), that satisfied f(θ) = kf(θ) for real k, we would ∂θ 

conclude that f(θ) = ekθ. Thus if we want the calculus to work in the same way for complex 
numbers as for real numbers, we must conclude that 

iθ e = cos θ + i sin θ . (1.57) 

We can check this relation by noting that the Taylor series expansions of the two sides 
are equal. The Taylor expansion of the exponential, cos, and sin functions are: 

2 3 4 

e x = 1 + x + 
x

+ 
x

+ 
x

+ · · · 
2 3! 4! 
2 4x x (1.58)cos(x) = 1 − + · · · 
2 4! 
3x

sin(x) = x − + · · · 
3! 

Thus the Taylor expansion of the left side of (1.57) is 

1 + iθ + (iθ)2/2 + (iθ)3/3! + · · · (1.59) 

while the Taylor expansion of the right side is 

(1 − θ2/2 + · · ·) + i(θ − θ3/6 + · · ·) (1.60) 

The powers of i in (1.59) work in just the right way to reproduce the pattern of minus signs 
in (1.60). 

Furthermore, the multiplication law works properly: 

iθ iθ0 e e = (cos θ + i sin θ)(cos θ0 + i sin θ0) 

= (cos θ cos θ0 − sin θ sin θ0) + i(sin θ cos θ0 + cos θ sin θ0) (1.61) 

i(θ+θ0)= cos(θ + θ0) + i sin(θ + θ0) = e . 
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Thus (1.57) makes sense in all respects. This connection between complex exponentials 
and trigonometric functions is called Euler’s Identity. It is extremely useful. For one thing, 
the logic can be reversed and the trigonometric functions can be “defined” algebraically in 
terms of complex exponentials: 

iθ + e−iθe
cos θ = 

2 (1.62) 
iθ − e−iθ iθ − e−iθ 

sin θ = 
e

= −i
e

.
2i 2 

Using (1.62), trigonometric identities can be derived very simply. For example: 

cos 3θ = Re (e 3iθ) = Re ((e iθ)3) = cos3 θ − 3 cos θ sin2 θ . (1.63) 

Another example that will be useful to us later is: 

i(θ+θ0) + e −i(θ+θ0) + e i(θ−θ0) + e −i(θ−θ0))/2cos(θ + θ0) + cos(θ − θ0) = (e 
(1.64) 

iθ + e iθ0 −iθ0= (e −iθ)(e + e )/2 = 2 cos θ cos θ0 . 

Every nonzero complex number can be written as the product of a positive real number 
(its absolute value) and a complex number with absolute value 1. Thus 

z = x + iy = R eiθ where R = |z| , and θ = arg(z) . (1.65) 

In the complex plane, (1.65) expresses the fact that a two-dimensional vector can be written √ 
either in Cartesian coordinates, (x, y), or in polar coordinates, (R, θ). For example, 3+i = √ 

iπ/6; 1 + i = iπ/4; −8i = 8e3iπ/2 = 8e
iπ/4 

2e √ 2 e −iπ/2. Figure 1.7 shows the complex number 
1 + i = 2 e . 

The relation, (1.65), gives another useful way of thinking about multiplication of complex 
numbers. If 

z1 = R1e iθ1 and z2 = R2e iθ2 , (1.66) 

then 
z1z2 = R1R2e i(θ1+θ2) . (1.67) 

In words, to multiply two complex numbers, you multiply the absolute values and add the 
arguments. You should now go back and play with program 1-2 with this relation in mind. 

Equation (1.57) yields a number of relations that may seem surprising until you get used 
iπ iπ/2 2iπto them. For example: e = −1; e = i; e = 1. These have an interpretation in the 

complex plane where eiθ is the unit vector (cos θ, sin θ), 
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√ 

2 eiπ/4 

Figure 1.7: A complex number in two different forms. 

which is at an angle θ measured counterclockwise from the x axis. Then −1 is 180◦ or π 
radians counterclockwise from the x axis, while i is along the y axis, 90◦ or π/2 radians 
from the x axis. 2π radians is 360◦, and thus rotates us all the way back to the x axis. These 
relations are shown in figure 1.8. 

1.4.4 Notation 

It is not really necessary to have a notation that distinguishes between real numbers and 
complex numbers. The reason is that, as we have seen, the rules of arithmetic, algebra and 
calculus apply to real and complex numbers in exactly the same way. Nevertheless, some 
readers may find it helpful to be reminded when a quantity is complex. This is probably 
particularly useful for the quantities like x that represent physical coordinates. Therefore, at 
least for the first few chapters until the reader is thoroughly complexified, we will distinguish 
between real and complex “coordinates.” If they are real, we will use letters x and y. If they 
are complex, we will use z and w. 

1.5 Exponential Solutions 

We are now ready to translate the conditions of linearity and time translation invariance into 
mathematics. What we will see is that the two properties of linearity and time translation 
invariance lead automatically to irreducible solutions satisfying (1.38), and furthermore that 
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6 
i=eiπ/2 

�−1=eiπ 
- 1=e2iπ 

-

?−i=e−iπ/2=e3iπ/2 

Figure 1.8: Some special complex exponentials in the complex plane. 

these irreducible solutions are just exponentials. We do not need to use any other details 
about the equation of motion to get this result. Therefore our arguments will apply to much 
more complicated situations, in which there is damping or more degrees of freedom or both. 
So long as the system has time translation invariance and linearity, the solutions will be 
sums of irreducible exponential solutions. 

We have seen that the solutions of homogeneous linear differential equations with con-
stant coefficients, of the form, 

d2 

M x(t) + K x(t) = 0 , (1.68)
dt2 

have the properties of linearity and time translation invariance. The equation of simple har-
monic motion is of this form. The coordinates are real, and the constants M and K are real 
because they are physical things like masses and spring constants. However, we want to al-
low ourselves the luxury of considering complex solutions as well, so we consider the same 
equation with complex variables: 

d2 

M z(t) + K z(t) = 0 . (1.69)
dt2 

Note the relation between the solutions to (1.68) and (1.69). Because the coefficients 
M and K are real, for every solution, z(t), of (1.69), the complex conjugate, z(t)∗, is also 
a solution. The differential equation remains true when the signs of all the i’s are changed. 
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From these two solutions, we can construct two real solutions: 

x1(t) = Re (z(t)) = (z(t) + z(t)∗) /2 ; 
(1.70) 

x2(t) = Im (z(t)) = (z(t) − z(t)∗) /2i . 

All this is possible because of linearity, which allows us to go back and forth from real to 
complex solutions by forming linear combinations, as in (1.70). These are solutions of (1.68). 
Note that x1(t) and x2(t) are just the real and imaginary parts of z(t). The point is that you 
can always reconstruct the physical real solutions to the equation of motion from the 
complex solution. You can do all of the mathematics using complex variables, which 
makes it much easier. Then at the end you can get the physical solution of interest just 
by taking the real part of your complex solution. 

Now back to the solution to (1.69). What we want to show is that we are led to irreducible, 
exponential solutions for any system with time translation invariance and linearity! Thus we 
will understand why we can always find irreducible solutions, not only in (1.69), but in much 
more complicated situations with damping, or more degrees of freedom. 

There are two crucial elements: 

1. Time translation invariance, (1.33), which requires that x(t + a) is a 
solution if x(t) is a solution; 

(1.71) 
2. Linearity, which allows us to form linear combinations of solutions 

to get new solutions. 

We will solve (1.68) using only these two elements. That will allow us to generalize our 
solution immediately to any system in which the properties, (1.71), are present. 

One way of using linearity is to choose a “basis” set of solutions, xj (t) for j = 1 to n 
which is “complete” and “linearly independent.” For the harmonic oscillator, two solutions 
are all we need, so n = 2. But our analysis will be much more general and will apply, for 
example, to linear systems with more degrees of freedom, so we will leave n free. What 
“complete” means is that any solution, z(t), (which may be complex) can be expressed as a 
linear combination of the xj (t)’s, 

n

z(t) = 
X 

cj xj (t) . (1.72) 
j=1 

What “linearly independent” means is that none of the xj (t)’s can be expressed as a linear 
combination of the others, so that the only linear combination of the xj (t)s that vanishes is 
the trivial combination, with only zero coefficients, 

nX 
cj xj (t) = 0 ⇒ cj = 0 . (1.73) 

j=1 
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Now let us see whether we can find an irreducible solution that behaves simply under a 
change in the initial clock setting, as in (1.38), 

z(t + a) = h(a) z(t) (1.74) 

for some (possibly complex) function h(a). In terms of the basis solutions, this is 

nX
z(t + a) = h(a) ckxk(t) . (1.75) 

k=1 

But each of the basis solutions also goes into a solution under a time translation, and each 
new solution can, in turn, be written as a linear combination of the basis solutions, as follows: 

X 

nX 

n

xj (t + a) = Rjk(a) xk(t) . (1.76) 
k=1 

Thus 
nX

z(t + a) = cj xj (t + a) = cj Rjk(a) xk(t) . (1.77) 
j=1 j,k=1 

X 

Comparing (1.75) and (1.77), and using (1.73), we see that we can find an irreducible solution 
if and only if 

n

cj Rjk(a) = h(a) ck for all k. (1.78) 

X 

j=1 

This is called an “eigenvalue equation.” We will have much more to say about eigenvalue 
equations in chapter 3, when we discuss matrix notation. For now, note that (1.78) is a set of 
n homogeneous simultaneous equations in the n unknown coefficients, cj . We can rewrite it 
as 

n

cj Sjk(a) = 0 for all k, (1.79) 
j=1 

where 

Sjk(a) = 

⎧
⎪

⎩
⎨
⎪

Rjk(a) for j 6= k , 
(1.80) 

Rjk(a) − h(a) for j = k . 

We can find a solution to (1.78) if and only if there is a solution of the determinantal equation5 

det Sjk(a) = 0 . (1.81) 

5We will discuss the determinant in detail in chapter 3, so if you have forgotten this result from algebra, don’t 
worry about it for now. 
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(1.81) is an nth order equation in the variable h(a). It may have no real solution, but it 
always has n complex solutions for h(a) (although some of the h(a) values may appear 
more than once). For each solution for h(a), we can find a set of cj s satisfying (1.78). The 
different linear combinations, z(t), constructed in this way will be a linearly independent set 
of irreducible solutions, each satisfying (1.74), for some h(a). If there are n different h(a)s, 
the usual situation, they will be a complete set of irreducible solutions to the equations of 
motions. Then we may as well take our solutions to be irreducible, satisfying (1.74). We will 
see later what happens when some of the h(a)s appear more than once so that there are fewer 
than n different ones. 

Now for each such irreducible solution, we can see what the functions h(a) and z(a) 
must be. If we differentiate both sides of (1.74) with respect to a, we obtain 

z 0(t + a) = h0(a) z(t) . (1.82) 

Setting a = 0 gives 
z 0(t) = H z(t) (1.83) 

where 
H ≡ h0(0) . (1.84) 

This implies 
Ht z(t) ∝ e . (1.85) 

Thus the irreducible solution is an exponential! We have shown that (1.71) leads to irre-
ducible, exponential solutions, without using any of details of the dynamics! 

1.5.1 * Building Up The Exponential 

There is another way to see what (1.74) implies for the form of the irreducible solution that 
does not even involve solving the simple differential equation, (1.83). Begin by setting t=0 
in (1.74). This gives 

h(a) = z(a)/z(0) . (1.86) 

h(a) is proportional to z(a). This is particularly simple if we choose to multiply our irre-
ducible solution by a constant so that z(0) = 1. Then (1.86) gives 

h(a) = z(a) (1.87) 

and therefore 
z(t + a) = z(t) z(a) . (1.88) 

Consider what happens for very small t = ² ¿ 1. Performing a Taylor expansion, we 
can write 

z(²) = 1 + H² + O(²2) (1.89) 



23 1.5. EXPONENTIAL SOLUTIONS 

where H = z0(0) from (1.84) and (1.87). Using (1.88), we can show that 

z(N²) = [z(²)]N . (1.90) 

Then for any t we can write (taking t = N²) 

Ht z(t) = lim [z(t/N)]N = lim [1 + H(t/N)]N = e . (1.91) 
N→∞ N→∞

Thus again, we see that the irreducible solution with respect to time translation invariance is 
just an exponential!6 

Ht z(t) = e . (1.92) 

1.5.2 What is H? 

When we put the irreducible solution, eHt, into (1.69), the derivatives just pull down powers 
Ht)of H so the equation becomes a purely algebraic equation (dropping an overall factor of e

M H2 + K = 0 . (1.93) 

Now, finally, we can see the relevance of complex numbers to the above discussion of time 
translation invariance. For positive M and K, the equation (1.93) has no solutions at all if we 
restrict H to be real. We cannot find any real irreducible solutions. But there are always two 
solutions for H in the complex numbers. In this case, the solution is 

s 
K 

H = ±iω where ω = . (1.94)M 

It is only in this last step, where we actually compute H, that the details of (1.69) enter. 
Until (1.93), everything followed simply from the general principles, (1.71). 

Now, as above, from these two solutions, we can construct two real solutions by taking 
±iωt the real and imaginary parts of z(t) = e . 

x1(t) = Re (z(t)) = cos ωt , x2(t) = Im (z(t)) = ± sin ωt . (1.95) 

Time translations mix up these two real solutions. That is why the irreducible complex ex-
ponential solutions are easier to work with. The quantity ω is the angular frequency that we 
saw in (1.5) in the solution of the equation of motion for the harmonic oscillator. Any linear 

6For the mathematically sophisticated, what we have done here is to use the “group” structure of time trans-
lations to find the form of the solution. In words, we have built up an arbitrarily large time translation out of little 
ones. 
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combination of such solutions can be written in terms of an “amplitude” and a “phase” as 
follows: For real c and d 

iωt + e −iωt)/2 − id (e iωt − e −iωt)/2c cos(ωt) + d sin(ωt) = c (e 

−iωt ́
 

= Re 
¡
(c + id)e−iωt

¢ 
= Re 

³ 
Aeiθ e (1.96) 

= Re 
³ 
Ae−i(ωt−θ)

´ 
= A cos(ωt − θ) . 

where A is a positive real number called the amplitude, 

A = 
p

c2 + d2 , (1.97) 

and θ is an angle called the phase, 

θ = arg(c + id) . (1.98) 

These relations are another example of the equivalence of Cartesian coordinates and polar 
coordinates, discussed after (1.65). The pair, c and d, are the Cartesian coordinates in the 
complex plane of the complex number, c + id. The amplitude, A, and phase, θ, are the 
polar coordinate representation of the same complex (1.96) shows that c and d are also the 
coefficients of cos ωt and sin ωt in the real part of the product of this complex number with 
−iωt e . This relation is illustrated in figure 1.9 (note the relation to figure 1.4). As z moves 

clockwise with constant angular velocity, ω, around the circle, |z| = A, in the complex plane, 
the real part of z undergoes simple harmonic motion, A cos(ωt − θ). 

Now that you know about complex numbers and complex exponentials, you should go 
back to the relation between simple harmonic motion and uniform circular motion illustrated 
in figure 1.4 and in supplementary program 1-1. The uniform circular motion can interpreted 
as a motion in the complex plane of the 

−iωt z(t) = e . (1.99) 

As t changes, z(t) moves with constant clockwise velocity around the unit circle in the com-
plex plane. This is the clockwise motion shown in program 1-1. The real part, cos ωt, exe-
cutes simple harmonic motion. 

+iωt Note that we could have just as easily taken our complex solution to be e . This 
would correspond to counterclockwise motion in the complex plane, but the real part, which 
is all that matters physically, would be unchanged. It is conventional in physics to go to 

−iωt complex solutions proportional to e . This is purely a convention. There is no physics 
in it. However, it is sufficiently universal in the physics literature that we will try to do it 
consistently here. 
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Figure 1.9: The relation (1.96) in the complex plane. 

1.6 LC Circuits 

One of the most important examples of an oscillating system is an LC circuit. You probably 
studied these in your course on electricity and magnetism. Like a Hooke’s law spring, this 
system is linear, because the relations between charge, current, voltage, and the like for ideal 
inductors, capacitors and resistors are linear. Here we want to make explicit the analogy 
between a particular LC circuit and a system of a mass on a spring. The LC circuit with 
a resistanceless inductor with an inductance L and a capacitor of capacitance C is shown 
in figure 1.10. We might not ordinarily think of this as a circuit at all, because there is no 
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battery or other source of electrical power. However, we could imagine, for example, that 
the capacitor was charged initially when the circuit was put together. Then current would 
flow when the circuit was completed. In fact, in the absence of resistance, the current would 
continue to oscillate forever. We shall see that this circuit is analogous to the combination of 
springs and a mass shown in figure 1.11. The oscillation frequency of the mechanical system 
is s 

K 
ω = (1.100) 
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L 

..................
.........
...
...........

........
. ....................

.......... ..................
.........
...
...........

........
. ....................

.......... ..................
.........
...
...........

........
. .................... 

.......... 

C 

Figure 1.10: An LC circuit. 
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Figure 1.11: A system analogous to figure 1.10. 

We can describe the configuration of the mechanical system of figure 1.10 in terms of 
x, the displacement of the block to the right. We can describe the configuration of the LC 
circuit of figure 1.10 in terms of Q, the charge that has been “displaced” through the inductor 
from the equilibrium situation with the capacitor uncharged. In this case, the charge displaced 
through the inductor goes entirely onto the capacitor because there is nowhere else for it to 
go, as shown in figure 1.12. The current through the inductor is the time derivative of the 
charge that has gone through, 

dQ
I = . (1.101)

dt 

To see how the LC circuit works, we can examine the voltages at various points in the 
system, as shown in figure 1.13. For an inductor, the voltage drop across it is the rate of 
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Figure 1.12: The charge moved through the inductor. 
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Figure 1.13: Voltage and current. 

change of current through it, or 
dI − L = V . (1.102)
dt 

For the capacitor, the stored charge is the voltage times the capacitance, or 

V = Q/C . (1.103) 

Putting (1.101), (1.102) and (1.103) together gives 

dI d2Q 1 
L = L = − Q . (1.104)

dt dt2 C 

The correspondence between the two systems is the following: 

m ↔ L 

K ↔ 1/C (1.105) 

x ↔ Q 

When we make the substitutions in (1.105), the equation of motion, (1.3), of the mass on a 
spring goes into (1.104). Thus, knowing the solution, (1.6), for the mass on a spring, we can 
immediately conclude that the displaced charge in this LC circuit oscillates with frequency 

r 
1 

ω = . (1.106)
LC 
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1.7 Units — Displacement and Energy 

We have now seen two very different kinds of physical systems that exhibit simple harmonic 
oscillation. Others are possible as well, and we will give another example below. This is a 
good time to discuss the units of the equations of motions. The “generic” equation of motion 
for simple harmonic motion without damping looks like this 

d2X M 
dt2 = −K X (1.107) 

where 

X is the generalized coordinate, 

M is the generalized mass, (1.108) 

K is the generalized spring constant. 

In the simple harmonic motion of a point mass, X is just the displacement from equilibrium, 
x, M is the mass, m, and K is the spring constant, K. 

The appropriate units for M and K depend on the units for X . They are conventionally 
determined by the requirement that 

1 
µ 

dX 
¶2 

M (1.109)
2 dt 

is the “kinetic” energy of the system arising from the change of the coordinate with time, and 

1 KX 2 (1.110)
2

is the “potential” energy of the system, stored in the generalized spring. 
It makes good physical sense to grant the energy a special status in these problems be-

cause in the absence of friction and external forces, the total energy, the sum of the kinetic 
energy in (1.109) and the potential energy in (1.110), is constant. In the oscillation, the en-
ergy is alternately stored in kinetic energy and potential energy. When the system is in its 
equilibrium configuration, but moving with its maximum velocity, the energy is all kinetic. 
When the system instantaneously comes to rest at its maximum displacement, all the energy 
is potential energy. In fact, it is sometimes easier to identify M and K by calculating the 
kinetic and potential energies than by finding the equation of motion directly. We will use 
this trick in chapter 11 to discuss water waves. 

For example, in an LC circuit in SI units, we took our generalized coordinate to be a 
charge, Q, in Coulombs. Energy is measured in Joules or Volts×Coulombs. The generalized 
spring constant has units of 

Joules Volts 
= (1.111)

Coulombs2 Coulombs 
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which is one over the unit of capacitance, Coulombs per Volt, or farads. The generalized 
mass has units of 

Joules × seconds2 Volts × seconds 
= (1.112)

Coulombs2 Amperes 

which is a unit of inductance (Henrys). This is what we used in our correspondence between 
the LC circuit and the mechanical oscillator, (1.105). 

We can also add a generalized force to the right-hand side of (1.107). The generalized 
force has units of energy over generalized displacement. This is right because when the 
equation of motion is multiplied by the displacement, (1.109) and (1.110) imply that each of 
the terms has units of energy. Thus for example, in the LC circuit example, the generalized 
force is a voltage. 

1.7.1 Constant Energy 

The total energy is the sum of kinetic plus potential energy from (1.109) and (1.110), 

1 
µ 

dX 
¶2 1 

E = M + KX 2 . (1.113)
2 dt 2

If there are no external forces acting on the system, the total energy must be constant. You 
can see from (1.113) that the energy can be constant for an oscillating solution only if the 
angular frequency, ω, is 

pK/M. Suppose, for example, that the generalized displacement 
of the system has the form 

X (t) = A sin ωt , (1.114) 

where A is an amplitude with the units of X . Then the generalized velocity, is 

d 
dt 
X (t) = Aω cos ωt . (1.115) 

To make the energy constant, we must have 

K = ω2M . (1.116) 

Then, the total energy, from (1.109) and (1.110) is 

1 
2
Mω2A2 cos2 ωt + 

1 
2
KA2 sin2 ωt = 

1 
2
KA2 . (1.117) 

1.7.2 The Torsion Pendulum 

One more example may be useful. Let us consider the torsion pendulum, shown in figure 
1.14. 
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Figure 1.14: Two views of a torsion pendulum. 

A torsion pendulum is a simple but very useful oscillator consisting of a dumbbell or rod 
supported at its center by a wire or fiber, hung from a support above. When the dumbbell is 
twisted by an angle θ, as shown in the top view in figure 1.14, the wire twists and provides a 
restoring torque on the dumbbell. For a suitable wire or fiber, this restoring torque is nearly 
linear even for rather large displacement angles. In this system, the natural variable to use for 
the displacement is the angle θ. Then the equation of motion is 

d2θ 
I = −αθ , (1.118)

dt2 

where I is the moment of inertia of the dumbbell about its center and −αθ is the restoring 
force. Thus the generalized mass is the moment of inertia, I, with units of length squared 
times mass and the generalized spring constant is the constant α, with units of torque. As 
expected, from (1.109) and (1.110), the kinetic energy and potential energy are (respectively) 

1 
µ 

dθ 
¶2 1 

I and αθ2 . (1.119)
2 dt 2

1.8 A Simple Nonlinear Oscillator 

To illustrate some of the differences between linear and nonlinear oscillators, we will give 
one very simple example of a nonlinear oscillator. Consider the following nonlinear equation 
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of motion: ⎧ 
−F0 for x > 0 , 

d2 

⎪⎪⎪⎪
m x = 

⎨ 
F0 for x < 0 , (1.120)

dt2 ⎪⎪⎪⎪ 0 for x = 0 .⎩ 

This describes a particle with mass, m, that is subject to a force to the left, −F0, when the 
particle is to the right of the origin (x(t) > 0), a force to the right, F0, when the particle is to 
the left of the origin (x(t) < 0), and no force when the particle is sitting right on the origin. 

The potential energy for this system grows linearly on both sides of x = 0. It cannot 
be differentiated at x = 0, because the derivative is not continuous there. Thus, we cannot 
expand the potential energy (or the force) in a Taylor series around the point x = 0, and the 
arguments of (1.21)-(1.24) do not apply. 

It is easy to find a solution of (1.120). Suppose that at time, t = 0, the particle is at the 
origin but moving with positive velocity, v. The particle immediately moves to the right of 
the origin and decelerates with constant acceleration, −F0/m, so that 

F0 2 x(t) = vt − t for t ≤ τ , (1.121)
2m 

where 
2mv 

τ = (1.122)
F0 

is the time required for the particle to turn around and get back to the origin. At time, t = τ , 
the particle moves to the left of the origin. At this point it is moving with velocity, −v, 
the process is repeated for negative x and positive acceleration F0/m. Then the solution 
continues in the form 

F0 
x(t) = −v(t − τ) + (t − τ)2 for τ ≤ t ≤ 2τ . (1.123)

2m 

Then the whole process repeats. The motion of the particle, shown in figure 1.15, looks su-
perficially like harmonic oscillation, but the curve is a sequence of parabolas pasted together, 
instead of a sine wave. 

The equation of motion, (1.120), is time translation invariant. Clearly, we can start the 
particle at the origin with velocity, v, at any time, t0. The solution then looks like that shown 
in figure 1.15 but translated in time by t0. The solution has the form 

xt0 (t) = x(t − t0) (1.124) 

where x(t) is the function described by (1.121), (1.123), etc. This shown in figure 1.16 for 
t = t0 = 3τ/4. The dotted curve corresponds to t0 = 0 
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Figure 1.15: The motion of a particle with a nonlinear equation of motion. 
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Figure 1.16: Motion started from the origin at t = t0 = 3τ/4. 

Like the harmonic oscillator, this system oscillates regularly and indefinitely. However, in 
this case, the period of the oscillation, the time it takes to repeat, 2τ , depends on the amplitude 
of the oscillation, or equivalently, on the initial velocity, v. The period is proportional to v, 
from (1.122). The motion of the particle started from the origin at t = t0, for an initial 
velocity v/2 is shown in figure 1.17. The dotted curve corresponds to an initial velocity, v. 

While the nonlinear equation of motion, (1.120), is time translation invariant, the sym-
metry is much less useful because the system lacks linearity. From our point of view, the 
important thing about linearity (apart from the fact that it is a good approximation in so many 
important physical systems), is that it allows us to choose a convenient basis for the solu-
tions to the equation of motion. We choose them to behave simply under time translations. 
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Figure 1.17: Initial velocity v/2. 

Then, because of linearity, we can build up any solution as a linear combination of the basis 
solutions. In a situation like (1.120), we do not have this option. 

Chapter Checklist 

You should now be able to: 

1. Analyze the physics of a harmonic oscillator, including finding the spring constant, 
setting up the equation of motion, solving it, and imposing initial conditions; 

2. Find the approximate “spring constant” for the small oscillations about a point of equi-
librium and estimate the displacement for which linearity breaks down; 

3. Understand the connection between harmonic oscillation and uniform circular motion; 

4. Use complex arithmetic and complex exponentials; 

5. Solve homogeneous linear equations of motion using irreducible solutions that are 
complex exponentials; 

6. Understand and explain the difference between frequency and angular frequency; 

7. Analyze the oscillations of LC circuits; 

8. Compute physical quantities for oscillating systems in SI units. 

9. Understand time translation invariance in nonlinear systems. 
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Problems 

1.1. For the mass and spring discussed (1.1)-(1.8), suppose that the system is hung 
vertically in the earth’s gravitational field, with the top of the spring held fixed. Show that the 
frequency for vertical oscillations is given by (1.5). Explain why gravity has no effect on the 
angular frequency. 

1.2a. Find an expression for cos 7θ in terms of cos θ and sin θ by using complex expo-
nentials and the binomial expansion. 

b. Do the same for sin 5θ. 

c. Use complex exponentials to find an expression for sin(θ1 + θ2 + θ3) in terms of the 
sines and cosines of the individual angles. 

d. Do you remember the “half angle formula,” 

2 θ 1 
cos = (1 + cos θ) ? 

2 2

Use complex exponentials to prove the “fifth angle formula,” 

5 θ 10 θ 5 3θ 1 
cos = cos + cos + cos θ . 

5 16 5 16 5 16 

e. Use complex exponentials to prove the identity 
´ 

sin 6x = sin x 
³ 
32 cos5 x − 32 cos3 x + 6 cos x . 

√ 
1.3a. Write i + 3 in the form R eiθ. Write θ as a rational number times π. 

√ 
b. Do the same for i − 3. 

√ 
c. Show that the two square roots of R eiθ are ± R eiθ/2 . Hint: This is easy! Don’t 
work too hard. 

√ 
d. Use the result of c. to find the square roots of 2i and 2 + 2i 3. 

1.4. Find all six solutions to the equation z6 = 1 and write each in the form A + iB and 
plot them in the complex plane. Hint: write z = Reiθ for R real and positive, and find R 
and θ. 



35 PROBLEMS 

1.5. Find three independent solutions to the differential equation 

d3 

f(t) + f(t) = 0 . 
dt3 

You should use complex exponentials to derive the solutions, but express the results in real 
form. 

1.6. A block of mass M slides without friction between two springs of spring constant 
K and 2K, as shown. The block is constrained to move only left and right on the paper, so 
the system has only one degree of freedom. 
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Calculate the oscillation angular frequency. If the velocity of the block when it is at its 
equilibrium position is v, calculate the amplitude of the oscillation. 

1.7. A particle of mass m moves on the x axis with potential energy 

E0 2 2 ́
 

V (x) = 
³ 
x 4 + 4ax 3 − 8a x .

4a

Find the positions at which the particle is in stable equilibrium. Find the angular frequency of 
small oscillations about each equilibrium position. What do you mean by small oscillations? 
Be quantitative and give a separate answer for each point of stable equilibrium. 

1.8. For the torsion pendulum of figure 1.14, suppose that the pendulum consists of two 
0.01 kg masses on a light rod of total length 0.1 m. If the generalized spring constant, α, is 
5 × 10−7 N m. Find the angular frequency of the oscillator. 
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