
Chapter 8 

Traveling Waves 

In this chapter, we show how the same physics that leads to standing wave oscillations also 
gives rise to waves that move in space as well as time. We then go on to introduce the 
important physical example of light waves. 

Preview 

In an infinite translation invariant system, traveling waves arise naturally from the complex 
exponential behavior of the solutions in space and time. 

i. We begin by showing the connection between standing waves and traveling waves in 
infinite systems. A traveling wave in a linear system is a pair of standing waves put 
together with a special phase relation. We show how traveling waves can be produced 
in finite systems by appropriate forced oscillations. 

ii. We then go on to discuss the force and power required to produce a traveling wave on 
a string, and introduce the useful idea of “impedance.” 

iii. We introduce and discuss the most important classical example of wave phenomena, 
electromagnetic waves and light. 

iv. We reexamine the translation invariant systems of coupled LC circuits discussed in 
chapter 5 and show how they are related to electromagnetic waves. 

v. We discuss the effects of damping in translation invariant systems, giving a simple 
physical interpretation of the effect of traveling waves. 

vi. We discuss traveling waves in systems with damping and in systems with high and/or 
low frequency cut-offs. 
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8.1 Standing and Traveling Waves 

8.1.1 What is It That is Moving? 

.............................
................................................................................................................................................................
........
........
........................................................ ... .. 8-1 

We have seen that an infinite system with translation invariance has complex solutions of the 
form 

±ikx ±iωt e e , (8.1) 

where k and ω are related by the dispersion relation characteristic of the system. So far, we 
have considered standing wave solutions in which the space and time dependent factors are 
separately real, i.e. 

ikx − e −ikx) · (e iωt + e −iωt) .sin kx · cos ωt ∝ (e (8.2) 

But we can put the same solutions together in a different way, 

ikx −iωt + e −ikx iωt) .ψ(x, t) = cos(kx − ωt) ∝ (e e e (8.3) 

This is called a “traveling wave.” The underlying system that supports the wave is not 
actually traveling. Instead, what is moving is the wave itself. If we follow the point x 
for which ψ(x, t) has some constant value, the point moves in the positive x direction at 
a constant velocity, called the “phase velocity,” 

vφ = ω(k)/k . (8.4) 

In (8.3), for example, ψ(x, t) is equal to one for x = t = 0, because the argument of the 
cosine is zero (it is also equal to one for x = 2nπ/k for any integer n, but we will focus 
on just the single point, x = 0). As t increases, this point moves in the positive x direction 
because the argument of the cosine, kx−ωt, vanishes for x = ωt/k = vφt. This is illustrated 
in program 8-1. 

We will continue to define all the real modes to be real parts of complex modes propor-
tional to e−iωt. Thus (8.3) is 

ikx −iωt] .cos(kx − ωt) = Re [e e (8.5) 

In this notation a wave traveling to the left is 

−ikx −iωt] ,cos(kx + ωt) = Re [e e (8.6) 

while a standing wave is 

1 ikx −iωt + e −ikx −iωt]cos kx cos ωt = Re [e e e
2 (8.7) 

1= [cos(kx − ωt) + cos(kx + ωt)] .2 
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A standing wave is a combination of traveling waves going in opposite directions! Likewise, 
a traveling wave is a combination of standing waves. For example, 

cos(kx − ωt) = cos kx cos ωt + sin kx sin ωt . (8.8) 

These relations are important because they show that the relation between k and ω, the 
dispersion relation, is just the same for traveling waves as for standing waves! A wave 
is a wave, whether traveling or standing. Indeed, we can go back and forth using (8.7) and 
(8.8). The dispersion relation that relates k and ω is a property of the system in which 
the waves exist, not of the particular wave. 

The other side of this coin is that traveling waves exist for systems with any dispersion 
relation. Knowing the phase velocity, (8.4), for all k is equivalent to knowing the dispersion 
relation, because you must know ω(k). In particular, it is only for simple, continuous systems 
like the stretched string (see (6.5)) that ω(k) is proportional to k and the phase velocity is a 
constant, independent of k. 

8.1.2 Boundary Conditions 

.........................................................................................
.............................

...............................................................................
........
........................................................ ... .. 8-2 

Traveling waves can be produced in finite systems by forced oscillation with an appropriate 
phase for the oscillations at the two ends. A simple example involves a stretched string with 
tension T and linear mass density ρ. Given boundary conditions on the system so that 

ψ(0, t) = A cos ωt , ψ(L, t) = A sin ωt , (8.9) 

where L is the length of the string, the angular frequency ω is chosen so that 

5π 
r 

ρ ω 
k = = ω = . (8.10)

2L T vφ 

As usual in a forced oscillation problem, we are interested in the steady state solution in 
which the system moves with the angular frequency, ω, of the forcing terms. We can solve 
this problem easily by breaking it up into two problems. 

First consider the boundary condition: 

ψ1(0, t) = 0 , ψ1(L, t) = A sin ωt . (8.11) 

This is easily solved by the methods of chapter 5. From the condition at x = 0, we know 
that the solution for ψ1(x, t) is proportional to sin kx. Then the boundary condition at x = L 
gives the standing wave solution: 

ψ1(x, t) = A sin kx sin ωt . (8.12) 
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Next consider the boundary condition 

ψ2(0, t) = A cos ωt , ψ2(L, t) = 0 . (8.13) 

Analogous arguments (starting at x = L) show that the solution is the standing wave 

ψ2(x, t) = A cos kx cos ωt . (8.14) 

Now we can obtain the solution for the boundary condition (8.9) simply by adding these: 

ψ(x, t) = ψ1(x, t) + ψ2(x, t) 
(8.15) 

= A cos kx cos ωt + A sin kx sin ωt = A cos(kx − ωt) , 

which is a wave traveling from x = 0 to x = L. The crucial point is that the two standing 
waves out of which the traveling wave is built are 90◦ out of phase with one another both 
in time and in space. They get large at different points in space and also at different times 
and the interplay between the two produces the traveling wave. This is illustrated in figures 
8.1-8.4 for ωt = 0, π/4, π/2 and 3π/4. In each of these figures, the top curve is the traveling 
wave. The middle curve is (8.14). The lower curve is (8.12). 
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Figure 8.1: t = 0. 

This system is animated in program 8-2. This animation is important. It is worth staring 
at it for a while to get a better feeling for how (8.15) works than you can from the still pictures 
in figures 8.1-8.4. If you concentrate on a particular point on the string, you will see that the 
traveling wave gets large either when one of the standing waves is a maximum with the other 
near zero, or (depending on where you looking) when both standing waves are positive. 
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Figure 8.2: t = π/4. 
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Figure 8.3: t = π/2. 

8.2 Force, Power and Impedance 

Whatever is enforcing the boundary conditions in the example of (8.9) must exert a force on 
the string. Of course, a horizontal force is required to keep the string stretched, but for small 
oscillations, this force is nearly constant and approximately equal to the string tension, T . 
Furthermore, there is no motion in the x direction so no work is done by this component of 
the force. The vertical component of the force is the negative of the force which the tension 
on the string produces. At x = 0, this is 

F0 = −T 
∂ 
∂x 

ψ(x, t)|x=0 . (8.16) 

This is illustrated in figure 8.5. 
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Figure 8.4: t = 3π/4. 
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Figure 8.5: The force due to a string pulling in the +x direction. 

At x = L, because the string is coming in from the −x direction, it is 

∂ 
FL = T ψ(x, t)|x=L , (8.17)

∂x 
as illustrated in the figure 8.6. 

In the forced oscillation, the end of the string is moving only in the transverse direction. 
~Thus the power supplied by the external force at x = 0, which is F · ~v is 

∂ ∂ 
P (t) = −T ψ(x, t)| ψ(0, t) (8.18)x=0∂x ∂t 
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Figure 8.6: The force due to a string pulling in the −x direction. 

where as in (2.26), ψ(x, t) is the real displacement from equilibrium for the piece of string 
at horizontal position x. We must take the real part first because the power is a nonlinear 
function of the displacement. 

For a standing wave on the string (or any system with no frictional forces), the force and 
the velocity are 90◦ out of phase. For example, if the displacement is proportional to sin ωt, 
then the transverse force at each end is also proportional to sin ωt. The velocity, however, is 
proportional to cos ωt. Thus the power expended by the external force is 

1 ∝ sin ωt cos ωt = sin 2ωt . (8.19)
2 

This averages to zero over a half-cycle. On the average, no power is required to keep the 
standing wave going (in the absence of damping). 

In a traveling wave, on the other hand, the force and the velocity are proportional. From 
(8.15), you can see that 

∂ 
∂x 

ψ(x, t) = − 
k 
ω 

∂ 
∂t 

ψ(x, t) . (8.20) 

Thus 

F0 = Z 
∂ 
∂t 

ψ(0, t) , FL = −Z 
∂ 
∂t 

ψ(L, t) , (8.21) 

where the constant Z, 

Z = 
T k 
ω 

= 
p

ρT , (8.22) 
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is called the “impedance” of the string system. It measures the power required to produce 
the traveling wave. The power required at x = 0 is 

µ 
∂ 

¶2 

P0 = Z ψ(0, t) = Z A2 ω2 sin2 ωt . (8.23)
∂t 

The average power expended is thus 

hP0i = Z A2ω2/2 . (8.24) 

The power expended at x = 0 to produce the traveling wave is given up by the string at 
x = L, because the power required at L is 

µ 
∂ 

¶2 

PL = −Z ψ(L, t) = −Z A2ω2 cos2 ωt . (8.25)
∂t 

If the boundary conditions were such that the traveling waves were going in the opposite 
direction, the force in the above derivations would have the opposite sign from (8.20). Thus 
the positive power is always required to produce the wave and the negative power is required 
to absorb it. It may seem odd that the power fed into the wave in (8.23) and the power given 
up by the wave in (8.25) are not exactly equal and opposite. The sum vanishes on the average, 
but oscillates with time. The reason is that the length of the system is not an integral number 
of wavelengths. This allows the energy stored on the system, the sum of kinetic and potential, 
to oscillate as a function of time. 

Note that the force required to absorb a traveling wave, in (8.21), is negative and propor-
tional to the velocity. This is a typical frictional force. Thus a traveling wave can be absorbed 
completely by a frictional force (or a resistance) with exactly the right ratio of force to ve-
locity. If the impedance of the “dashpot” (as such a resistance is called) is not exactly the 
same as that of the string, there will be some reflection. We will come back to this in the next 
chapter. 

8.2.1 * Complex Impedance 

For the stretched string, a system for which the dispersion relation is equivalent to the wave 
∂equation, (6.4), the force on the system and the displacement velocity, ψ, are proportional ∂t 

for any traveling wave.1 In general, this is not true. For example, consider the beaded string 
of figure 5.4 stretched from x = 0 to some large x. Suppose further that there is a traveling 
wave in the system of the form, 

ψ(x, t) = A cos(kx − ωt) , (8.26) 

illustrated in figure 8.7.2 The dotted line is the equilibrium position of the string. 
1We will see this in detail in chapter 10. 
2For an animation of a traveling wave in a similar system, see program 8-6. The system shown in this program 

has the beads on springs, as well as on a string. However, the form of the traveling wave is the same. Only the 
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Figure 8.7: A snapshot of a traveling wave in a beaded string. 

So long as k and ω are related by the dispersion relation, (5.39), then (8.26) is a solution 
to the equation of motion. The external transverse force at x = 0 required to produce the 
traveling wave is related to the difference between the displacement of the first block and the 
displacement of the end at x = 0 (see figure 5.5). It is 

TA 
F0 = (cos(ωt − ka) − cos ωt) . (8.27) 

a 

This is approximately proportional to the velocity only if ka is very small, so that the right-
hand side of (8.27) can be expanded in a Taylor series. Thus in this case, and in general for a 
discrete system, we cannot define the impedance simply as in (8.21). 

However, suppose that instead of the real traveling waves, (8.26), we consider a complex 
harmonic traveling wave with irreducible time and space of the form 

ψ(x, t) = Ae−i(ωt−kx) . (8.28) 

Then because of the irreducible on t and x (that comes from translation invariance), we know 
immediately that the both the force and the t derivative of ψ are proportional to ψ. For an 
irreducible solution, everything is proportional to e−i(ωt−kx). Thus they are also proportional 
to each other, and we can define the impedance, 

−i(ωt−kx)F = −Z(k) 
∂

ψ(x, t) = iωA Z(k) e . (8.29)
∂t 

For example, for the beaded string, if we replace the real solution, (8.26), with the irre-
ducible complex solution, (8.28), the force becomes 

F0 
TA −i(ωt−ka) − e −iωt ́

 
= 

TA ika − 1 
´ 

e −iωt= 
³ 
e 

³ 
e . (8.30) 

a a 

Thus from (8.29), the impedance, Z(k), is 

ika − 1T e 2T sin ka 
ika/2 2Z(k) = = e . (8.31)

ωa i a ω 

dispersion relation is different. 
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Using the dispersion relation, (5.39), we can write this as 

ika/2 

s 
mT 

Z(k) = e . (8.32) 
a 

The impedance, Z(k), defined by (8.29) is, in general, complex, and k dependent. Never-
theless, we can find the average power required to produce the wave. Because the power is 
a nonlinear function of the displacement, we must first take the real parts of the complex 
velocity and complex force before computing the power, as in (2.26). For arbitrary complex 

iφA = |A|e , 

v = ω|A| sin(ωt − kx − φ) , 
(8.33) 

F = (Im Z(k)) ω|A| cos(ωt − kx − φ) + (Re Z(k)) ω|A| sin(ωt − kx − φ) , 

where we have put the phase of A into the cos and sin functions (see (1.96)-(1.98)) to make 
it clear that only the absolute value of A matters for the average power. Then, as in (2.26), 
only the sin2 term contributes to the time-averaged power, which is 

1
(Re Z) ω2|A|2 . (8.34)

2

8.3 Light 

Light waves, like the sound waves that we discussed in the previous chapter, are inherently 
three-dimensional things. However, as with sound, we can say a lot about light that is more 
or less independent of the three-dimensional details. 

8.3.1 Plane Waves 

There is a simple way of concentrating on only one dimension. That is to look for solutions 
in which the other two dimensions do not enter at all. Consider Maxwell’s equations in free 

~ ~space, in terms of the vector fields, E and B describing the electric and magnetic fields. 

∂Ey ∂Ex ∂Bz− = − 
∂x ∂y ∂t 
∂Ez ∂Ey ∂Bx− = − (8.35)
∂y ∂z ∂t 
∂Ex ∂Ez ∂By− = − 
∂z ∂x ∂t 
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∂By ∂Bx ∂Ez− = µ0²0
∂x ∂y ∂t 
∂Bz ∂By ∂Ex− = µ0²0 (8.36)
∂y ∂z ∂t 

∂Bx ∂Bz ∂Ey− = µ0²0
∂z ∂x ∂t 
∂Ex ∂Ey ∂Ez+ + = 0 
∂x ∂y ∂z (8.37)∂Bx ∂By ∂Bz+ + = 0 
∂x ∂y ∂z 

where ²0 and µ0 are two constants called the permittivity and permeability of empty space.3 

Let us look for solutions to these partial differential equations that involve only functions of 
z and t. In this case, things simplify to: 

∂Bz ∂Ey ∂Bx ∂Ex ∂By0 = − , − = − , = − , (8.38)
∂t ∂z ∂t ∂z ∂t 

∂Ez ∂By ∂Ex ∂Bx ∂Ey0 = µ0²0 , − = µ0²0 , = µ0²0 , (8.39)
∂t ∂z ∂t ∂z ∂t 

∂Ez ∂Bz= 0 , = 0 . (8.40)
∂z ∂z 

These equations imply that Ez and Bz are independent of z and t. Since we have already 
assumed that they depend only on z and t, this means that they are constants. We will ignore 
them because we are interested in the solutions with nontrivial z and t dependence. That 
leaves the x and y components, satisfying (8.38) and (8.39). 

Then, because (8.38) and (8.39) are invariant under translations in z and t, we expect 
complex exponential solutions, in which all components are proportional to 

i(±kz−ωt)e , (8.41) 

i(±kz−ωt) i(±kz−ωt)(z, t) = ε± e , (z, t) = ε± e , (8.42)Ex x Ey y 

i(±kz−ωt) i(±kz−ωt)Bx(z, t) = β± e , By(z, t) = βy 
± e , (8.43)x 

Direct substitution of (8.42) and (8.43) into (8.38) and (8.39) gives 

¨ kε± 
y = ωβx 

± , ±kε± = ωβ± , (8.44)x y 

¨ kβy 
± 

x , = −µ0²0ωε± .= −µ0²0ωε± ±kβ± (8.45)x y 

−iωt As usual, we have written the wave with the irreducible time dependence, e . To get 
the real electric and magnetic fields, we take the real part of (8.42) and (8.43). This works 

3See, for example, Purcell, chapter 9. 
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because Maxwell’s equations are linear in the electric and magnetic fields. The amplitudes, 
ε± 

From (8.44) and (8.45), you see that ε± is related to β± and ε± 
xxy

x , etc, can be complex. 
±is related to βy . For each 

relation, there are two homogeneous simultaneous linear equations in the two unknowns. 
They are consistent only if the ratio of the coefficients is the same, which implies a relation 
between k and ω, 

k2 = µ0²0ω
2 . (8.46) 

This is a dispersion relation, 

ω2 = c 2k2 = 
1 

µ0²0 
k2 . (8.47) 

y

The phase velocity, c, is the speed of light in vacuum (we will have more to say about this in 
chapters 10 and 11!). 

x 

Once (8.47) is satisfied, we can solve for the β± in terms of the ε±: 

β± β± ε± 
y 

1 1±ε ,x= ± = ¨ (8.48). 
c c 

These solutions to Maxwell’s equations in free space are electromagnetic waves, or light 
waves. These simple solutions, depending only on z and t are an example of plane wave 
solutions. The name is appropriate because the electric and magnetic fields in the wave have 
the same value everywhere on each plane of constant z, for any fixed time, t. These planes 
propagate in the ±z direction at the phase velocity, c. 

In general, electromagnetic waves can propagate in any direction in three-dimensional 
space. However, the electric and magnetic fields that make up the wave are always perpen-
dicular to the direction in which the wave is traveling and perpendicular to each other. 

The treatment of plane wave electromagnetic waves traveling in the z direction is analo-
gous to our treatment of sound in chapter 7. There, also, the wave depended only on z. How-
ever, the electromagnetic waves are a little more complicated because the wave phenomenon 
depends on both the electric and magnetic fields. The reason that we have postponed until 
now the discussion of electromagnetic waves, even though they are one of the most important 
examples of wave phenomena, is that the relations, (8.48), between the electric and magnetic 
fields depend on the direction in which the wave is traveling (the ± sign!). It is much easier 
to write down the solutions for the traveling waves than for the standing waves. Even for the 
simple traveling plane waves we have described that depend only on z and t, this relation 

~ ~between E and B and the direction of the wave depends on the three-dimensional properties 
of Maxwell’s equations. We will discuss these issues in much more detail in chapters 11 and 
12. 

8.3.2 Interferometers 

One of the wonderful features of light waves is that it is relatively easy to split them up 
and reassemble them. This feature is used in many optical devices, one of the simplest of 
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Figure 8.8: A schematic diagram of a Michelson interferometer. 

which is an “interferometer,” one version of which (the Michelson interferometer) is shown 
in schematic form in figure 8.8. A source produces a plane wave (as we will discuss in 
chapter 13, it cannot be quite a plane wave, but never mind that for now). The partially 
silvered mirror serves as a “beam splitter” by allowing some of the light to pass through, 
while reflecting the rest. Then the mirrors at the top and the right reflect the beams back. 
Then the partially silvered mirror serves as a “beam reassembler,” combining the beams from 
the top and the right into a single beam that travels on to the detector screen where the beam 
intensity (proportional to the square of the electric field) is measured. The important thing 
is that the light wave reaching the detector screen is the sum of two components that are 
coherent and yet have traveled different paths. What “coherent” means in this context is not 
only that the frequency is the same, but that the phase of the waves is correlated. In this case, 
that happens simply because the two components reaching the screen arise from the same 
incoming plane wave. 

Now the intensity of the light reaching the screen depends on the relative length of the 
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two paths. Different path lengths will produce different phases. If the two components are 
in phase, the amplitudes will add and the screen will be bright. This is called “constructive 
interference”. If the two components are 180◦ out of phase, the amplitudes will subtract and 
the screen will be dark. There will be what is called “destructive interference.” 

This sounds rather trivial, and indeed it is (at least for classical electromagnetic waves), 
but it is also extremely useful, because it provides a very sensitive measure of changes of the 
length of the paths. In particular, if one of the mirrors is moved a distance d (it might be part 
of an experimental setup designed to detect small motions, for example), the relative phase of 
the two components reaching the screen changes by 2kd where k is the angular wave number 
of the plane wave, because the path length of the reflected wave has changed by 2d. Thus 
each time d changes by a quarter of the wavelength of the light, the screen goes from bright 
to dark, or vice versa. 

This is a very useful way of measuring small distance changes. In practice, the incoming 
beam is not exactly a plane wave (that, as we will see in detail later, would require an infinite 
experiment!), so the intensity of the light is not uniform over the screen. Instead there are 
light areas and dark areas known as “fringes.” As the mirror is moved, the fringes move, and 
one can count the fringes that go past a given spot to keep track of the number of changes 
from bright to dark. 

8.3.3 Quantum Interference 

There is another wave of thinking about the interferometer that makes it seem much less 
trivial. As we will discuss several times in this book, and you will learn more about when you 
study quantum mechanics, light is not only a wave. It is also made up of individual particles 
of light called photons. You don’t notice this unless you turn the intensity of the light wave 
way down. But in fact, you can turn the intensity down so much that you can detect individual 
photons hitting the screen. Now it is not so clear what is happening. An individual photon 
cannot split into two parts at the beam splitter and beam reassembler. As we will see later, 
the energy of the photon is determined by the frequency of the light. It cannot be divided. 
You might think, therefore, that the individual photon would have to go one way or the other. 
But then how can one get an interference between the two paths? There is no answer to 
this question that makes “sense” in the classical physics of particles. Nevertheless, when the 
experiment is done, the number of photons reaching the screen depends on the difference in 
lengths between the two paths in just the way you expect from the wave description! The 
probability that a photon will hit a given spot on the screen is proportional to the intensity 
of the corresponding classical wave. If the path lengths produce destructive interference, no 
photons get through. Not only that, but similar experiments can be done with other particles, 
such as neutrons! Maybe interference is not so trivial after all. 
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8.4 Transmission Lines 

We have seen that a translation invariant system of inductors and capacitors can carry waves. 
Let us ask what happens when we take the continuum limit of such a system. This will give 
an interesting insight into electromagnetic waves. The dispersion relation for the system of 
figure 5.23 is given by (5.75), 

ω2 = 
4 

sin2 ka 
. (8.49)

LaCa 2 

where La and Ca are the inductance and capacitance of the inductors and capacitors for the 
system with separation a between neighboring parts. To take the continuum limit, we must 
replace the inductance and capacitance, La and Ca, by quantities that we expect to have finite 
limits as a → 0. We expect from the analogy, (5.69), between LC circuits and systems of 
springs and masses, and the discussion at the beginning of chapter 7 about the continuum 
limit of the system of masses and springs that the relevant quantities will be: 

ρL → 
La inductance per unit length 
a (8.50) 

Kaa → 
a 
Ca 

1 
capacitance per unit length 

These two quantities can be computed directly from the inductance and capacitance of a finite 
length, ̀ , of the system that contains many individual units. The inductances are connected 
in series so the individual inductances add to give the total inductance. Thus if the length ` is 
na so that if the finite system contains n inductors, the total inductance is L = nLa. Then 

L La = . (8.51)
` a 

The capacitances work the same way because they are connected in parallel, and parallel 
capacitances add. Thus 

C Ca = . (8.52)
` a 

Therefore, in taking the limit as a → 0 of (8.49), we can write 

L C 
La = a , Ca = a . (8.53)

` ` 

This gives the following dispersion relation: 

`2 4 sin2 ka 
`2

2ω2 = → k2 . (8.54)
2LC a LC 

A continuous system like this with fixed inductance and capacitance per unit length is 
called a transmission line. We will call (8.54) the dispersion relation for a resistanceless 
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transmission line. A transmission line can be used to send electrical waves, just as a continu-
ous string transmits mechanical waves. In the continuous system, the displacement variable, 
the displaced charge, becomes a function of position along the transmission line. If the trans-
mission line is stretched in the z direction, we can describe the charges on the transmission 
line by a function Q(z, t) that is the charge that has been displaced through the point z on 
the transmission line at time t. The time derivative of Q(z, t) is the current at the point z and 
time t: 

∂Q(z, t)
I(z, t) = . (8.55)

∂t 

8.4.1 Parallel Plate Transmission Line 

It is worth working out a particular example of a transmission line. The example we will use 
is of two long parallel conducting strips. Imagine an infinite system in which the strips are 
stretched parallel to one another in planes of constant y, going to infinity in the z direction. 
Suppose that the strips are sufficiently thin that we can neglect their thickness. Suppose 
further that the width of strips, w, is much larger than the separation, s. A cross section of 
this transmission line in the x − y plane is shown in figure 8.9. In the figure, the z direction 
is out of the plane of the paper, toward you. We will keep track of the motion of the charges 
in the upper conductor and assume that the lower conductor is grounded (with voltage fixed 
at V = 0). 

←−−−−−−−−−−−−−− w −−−−−−−−−−−−−−→ 
↑ ↑ 
y ↓ s 

x → 

Figure 8.9: Cross section of a transmission line in the x − y plane. 

We will find the dispersion relation of the transmission line by computing the capacitance 
and inductance of a part of the line of length `. It will be useful to do this using energy 
considerations. Suppose that there is a charge, Q, uniformly spread over the upper plate of 
the capacitor, and a current, I, flowing evenly out of the x − y plane in the z direction along 
the upper conductor (and back into the plane along the lower conductor). The energy stored 
in the length, ̀, of the transmission line is then 

1 1 
Q2 + LI2 , (8.56)

2C 2

where C and L are the capacitance and inductance.4 

4See Haliday and Resnick, part 2. 
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The energy is actually stored in the electric and magnetic fields produced by the charge 
and current. In this configuration, the electric and magnetic fields are almost entirely between 
the two plates of the piece of the transmission line. If Q and I are positive, the electric and 
magnetic fields are as shown in figure 8.10 and figure 8.11. In figure 8.10, the dotted line is 
a cross section of a box-shaped region that can be used to compute the electric field, using 
Gauss’s law. In figure 8.11, the dotted path can be used to compute the magnetic field, 
using Ampere’s law. The electric and magnetic fields are approximately constant between 
the strips, but quickly fall off to near zero outside. 

???????????????????? 

Figure 8.10: The electric field due to the charge on the transmission line. 

- - - - - - - - - -
- - - - - - - - - -- - - - - - - - - -

Figure 8.11: The magnetic field due to the current on the transmission line. 

The charge density on the upper plate is approximately uniform and given by the total 
charge divided by the area, w`, 

Q
σ ≈ . (8.57)

w` 
Then we can apply Gauss’s law to a small box-shaped region, a cross section of which is 
shown in figure 8.10 and conclude that the electric field inside is given by 

Q
Ey ≈ − (8.58)

²0w` 

The density of energy stored in the electric field between the plates is therefore 

Q2²0 
uE = E2 ≈ . (8.59)

2`2 

The total energy stored in the electric field is then obtained by multiplying uE by the volume 
between the plates, yielding 

2 2²0w

1 s 
Q2 (8.60)

2 ²0w`
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thus (comparing with (8.56)) 
²0w` 

C = . (8.61) 
s 

We can calculate the inductance in a similar way. Ampere’s law, applied to a path enclos-
ing the upper conductor (as shown in figure 8.11) gives 

µ0I 
Bx ≈ . (8.62) 

w 

The density of energy stored in the magnetic field between the plates is therefore 

1 µ0I
2 

uB = B2 ≈ . (8.63)
22µ0 2w

The total energy stored in the magnetic field is then obtained by multiplying uB by the volume 
between the plates, yielding 

1 µ0s` 
2 w 

I2 (8.64) 

thus (comparing with (8.56)) 

L = 
µ0s` 

. (8.65) 
w 

We can now put (8.61) and (8.65) into (8.54) to get the dispersion relation for this trans-
mission line: 

1 2k2ω2 = k2 = c , (8.66) 
µ0²0 

where c is the speed of light! 

8.4.2 Waves in the Transmission Line 

The dispersion relation, (8.66), looks suspiciously like the dispersion relation for electromag-
netic waves. In fact, the electric and magnetic fields between the strips of the transmission 
line have exactly the form of an electromagnetic wave. To see this explicitly, let us look at a 
traveling wave on the transmission line, and consider the charge, Q(z, t), displaced through 
z, with the irreducible complex exponential z and t dependence, 

i(kz−ωt)Q(z, t) = q e . (8.67) 

This wave is traveling in the positive z direction, out toward you in the diagram of figure 8.9. 
At any fixed time, t and position, z, the electric and magnetic fields inside the transmis-

sion line look as shown in figure 8.10 and figure 8.11 (or both may point in the opposite 
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direction). We can find the magnetic field just as we did above, because the current at any 
point along the line is given by (8.55), so 

µ0I(z, t) µ0 ∂ µ0ωq i(kz−ωt)Bx(z, t) ≈ = Q(z, t) = −i e . (8.68) 
w w ∂t w 

To find the electric field as a function of z and t, we need the density of charge along the 
line. Once we have that, we can find the electric field using Gauss’s law, as above. A nonzero 
charge density results if the amount of charge displaced changes as a function of z. It is 
easiest to find the charge density by returning to the discrete system discussed in chapter 5, 
and to (5.72). In the language in which we label the parts of the system by their positions, the 
charge, qj , in the discrete system becomes q(z, t) where z = ja. As a → 0, this corresponds 
to a linear charge density along the transmission line of 

q(z, t)
ρ(z, t) = . (8.69) 

a 

In this language, (5.72) becomes 

q(z, t) = Q(z, t) − Q(z + a, t) , (8.70) 

where Q(z, t) is the charge displaced through the inductor a position z at time t. Combining 
(8.69) and (8.70) gives 

Q(z, t) − Q(z + a, t)
ρ(z, t) = . (8.71) 

a 
Taking the limit as a → 0 gives 

ρ(z, t) = − 
∂

Q(z, t) = −ikq ei(kz−ωt) . (8.72)
∂z 

This linear charge density is spread out over the width of the upper strip in the transmission 
line, giving a surface charge density of 

ρ(z, t) kq i(kz−ωt)σ(z, t) = = −i e . (8.73) 
w w 

Now the electric field from Gauss’s law is 

σ(z, t) kq i(kz−ωt)Ey = − = i e . (8.74)
²0 ²0w 

Comparing (8.68) with (8.74), you can see that (8.45) is satisfied, so that this pair of electric 
and magnetic fields form a part of a traveling electromagnetic plane wave. 

What is happening here is that the role of the charges and currents in the strips of the 
transmission line is to confine the electromagnetic waves. Without the conductors it would 
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impossible to produce a piece of a plane wave, as we will see in much more detail in chapter 
13. 

Meanwhile, note that the mode with ω = 0 and k = 0 must be treated with care, as 
with the ω = k = 0 mode of the beaded string discussed in chapter 5. The mode in which 
the displaced charge is proportional to z (see (5.41)) describes a situation in which the entire 
infinite transmission line is charged. This is not very interesting in the finite case. However, 
the mode that is independent of z, but increasing with time, proportional to t is important. 
This describes the situation in which a constant current is flowing through the conductors. 
Inside the transmission line, in this case, is a constant magnetic field. 

8.5 Damping 

It is instructive, at this point, to consider waves in systems with frictional forces. We have 
postponed this until now because it will be easier to understand what is happening in systems 
with damping now that we have discussed traveling waves. 

The key observation is that in a translation invariant system, even in the presence of 
damping, the normal modes of the infinite system are exactly the same as they were without 
damping, because they are still determined by translation invariance. The normal modes 
are still of the form, e±ikx, characterized by the angular wave number k. Only the dispersion 
relation is different. To see how this goes in detail, let us recapitulate the arguments of chapter 
5. 

The dispersion relation for a system without damping is determined by the solution to the 
eigenvalue equation h

−ω2 + M−1K
i 

Ak = 0 , (8.75) 

where Ak is the normal mode with wave number k, 

Ak 
j ∝ eijka , (8.76) 

−iωt with time dependence e .5 We already know that Ak is a normal mode, because of trans-
lation invariance. This implies that it is an eigenvector of M−1K. The eigenvalue is some 
function of k. We will call it ω2(k), so that 0 

M−1K Ak = ω2(k) Ak . (8.77)0 

This function ω2(k) determines the dispersion relation for the system without damping, 0 
because the eigenvalue equation, (8.75) now implies 

ω2 = ω2(k) . (8.78)0

5In the presence of damping, the sign of i matters. The relations below would look different if we had used 
e iωt, and we could not use cos ωt or sin ωt. 
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We can now modify the discussion above to include damping in the infinite translation 
invariant system. In the presence of damping, the equation of motion looks like 

d2 d 
M ψ(t) = −M¡ ψ(t) − Kψ(t) , (8.79)

dt2 dt 
where M¡ is the matrix that describes the velocity dependent damping. Then for a normal 
mode, 

−iωt ψ(t) = Ak e , (8.80) 

the eigenvalue equation now looks like 
h
−ω2 − i¡ω + M−1K

i 
Ak = 0 . (8.81) 

Now, just as in (8.77) above, because of translation invariance, we know that Ak is an eigen-
vector of both M−1K and ¡, 

M−1K Ak = ω2(k) Ak , ¡ Ak = γ(k) Ak . (8.82)0

Then, as above, the eigenvalue equation becomes the dispersion relation 

ω2 = ω2(k) − iγ(k)ω . (8.83)0 

For all k, γ(k) ≥ 0, because as we will see in (8.84) below, the force is a frictional force. 
If γ(k) were negative for any k, then the “frictional” force would be feeding energy into the 
system instead of damping it. Note also that if ¡ = γI, then γ(k) = γ, independent of k. 
However, in general, the damping will depend on k. Modes with different k may get damped 
differently. 

In (8.83), we see the new feature of translation invariant systems with damping. The only 
difference is that the dispersion relation becomes complex. Both ω2(k) and γ(k) are real 0 
for real k. Because of the explicit i in (8.83), either ω or k (or both) must be complex to 
satisfy the equation of motion. 

8.5.1 Free Oscillations 

For free oscillations, the angular wave numbers, k, of the allowed modes are determined 
by the boundary conditions. Typically, the allowed k values are real and ω2(k) is positive 0

(corresponding to a stable equilibrium in the absence of damping). Then the modes of free 
oscillation are analogous to the free oscillations of a damped oscillator discussed in chapter 
2. In fact, if we substitute α → −iω and ¡ → γ(k) in (2.5), we get precisely (8.83). Thus 
we can take over the solution from (2.6), 

γ(k) 
s 

γ(k)2 
− iω = − ± − ω2(k) . (8.84)

2 4 0

This describes a solution that dies out exponentially in time. Whether it oscillates or dies out 
smoothly depends on the ratio of γ(k) to ω0(k), as discussed in chapter 2. 
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8.5.2 Forced Oscillation 

.............................
...............................................................................
........
................................................................................................................................................. ... .. 8-3 – 8-5 

Now consider a forced oscillation, in which we drive one end of a translation invariant system 
with angular frequency ω. After the free oscillations have died away, we are left with oscil-
lation at the single, real angular frequency ω. As always, in forced oscillation problems, we 
think of the real displacement of the end of the system as the real part of a complex displace-
ment, proportional to e−iωt. Then the dispersion relation, (8.83), applies. Now the dispersion 
relation determines k, and k must be complex. 

You may have noticed that none of the dispersion relations that we have studied so far 
depend on the sign of k. This is not an accident. The reason is that all the systems that we 
have studied have the property of reflection symmetry. We could change x → −x without 
affecting the physics. In fact, a translation invariant system that did not have this symmetry 
would be a little peculiar. As long as the system is invariant under reflections, x → −x, 
the dispersion relation cannot depend on the sign of k. The reason is that when x → −x, 

ikx −ikxthe mode e goes to e . If x → −x is a symmetry, these two modes with angular 
wave numbers k and −k must be physically equivalent, and therefore must have the same 
frequency. Thus the two solutions for fixed ω must have the form: 

k = ±(kr + iki) (8.85) 

Because of the ± sign, we can choose kr > 0 in (8.85). 
In systems with frictional forces, we always find 

ki ≥ 0 for kr > 0 . (8.86) 

The reason for this is easy to see if you consider the traveling waves, which have the form 

−iωt ±i(kr+iki)x e e (8.87) 

or 
i(±kr x−ωt) ¨kix e e . (8.88) 

From (8.88), it should be obvious what is going on. When the ± is +, the wave is going in 
the +x direction, so the sign of the real exponential is such that the amplitude of the wave 
decreases as x increases. The wave peters out as it travels! This is what must happen with a 
frictional force. The other sign would require a source of energy in the medium, so that the 
wave amplitude would grow exponentially as the wave travels. A part of an infinite damped 
traveling wave is animated in program 8-3. 

The form, (8.88) has some interesting consequences for forced oscillation problems in 
the presence of damping. In damped, discrete systems, even in a normal mode, the parts 
of the system do not all oscillate in phase. In damped, continuous systems, the distinction 
between traveling and standing waves gets blurred. 
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Consider a forced oscillation problem for the transverse oscillation of a string with one 
end, at x = 0 fixed, and the other end, x = L driven at frequency ω. It will not matter until 
the end of our analysis whether the string is continuous, or has beads with separation a such 
that na = L for integer n. The boundary conditions are 

ψ(L, t) = A cos ωt , ψ(0, t) = 0 . (8.89) 

As usual, we regard ψ(x, t) as the real part of a complex displacement, ψ̃(x, t), satisfying 

ψ̃(L, t) = Ae−iωt , ψ̃(0, t) = 0 . (8.90) 

If k, for the given angular frequency ω, is given by (8.85), then the relevant modes of the 
infinite system are those in (8.87), and we must find a linear combination of these two that 
satisfies (8.89). The answer is 

"Ã 
ei(kr +iki)x − e−i(kr+iki)x 

! #
˜ −iωtψ(x, t) = A e . (8.91) 

ei(kr+iki)L − e−i(kr+iki)L 

The factor in parentheses is constructed to vanish at x = 0 and to equal 1 at x = L. 
For a continuous string, the solution, (8.91), is animated in program 8-4. The interest-

ing thing to notice about this is that near the x = L end, the solution looks like a traveling 
wave. The reason is that here, the real exponential factors in (8.91) enhance the left-moving 
wave and suppress the right-moving wave, so that the solution is very nearly a traveling wave 
moving to the left. On the other hand, near x = 0, the real exponential factors are compara-
ble, and the solution is very nearly a standing wave. We will discuss the more complicated 
behavior in the middle in the next chapter. 

The same solution works for a beaded string (although the dispersion relation will be 
different). An example is shown in the animation in program 8-5. Here you can see very 
clearly that the parts of the system are not all in phase. 

8.6 High and Low Frequency Cut-Offs 

8.6.1 More on Coupled Pendulums 

.............................
................................................................................................................................................................
........
........
........................................................ ... .. 8-6 

In the previous section, we saw how the angular wave number, k, can become complex in 
a system with friction. There is another important way in which k can become complex. 
Consider the dispersion relation for the system of coupled pendulums, (5.35), which we can 
rewrite as follows: 

ω2 = ω2 + ω2 sin2 ka 
. (8.92)` c 2 
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Here a is interblock distance, ω` is the frequency of a single uncoupled pendulum, and ω2 is 
a frequency associated with the coupling between neighboring blocks. 

4K 
ω2 = (8.93)c m 

where m is the mass of a block and K is the spring constant of the coupling springs. 
Traveling waves in a system with a dispersion relation like (8.92) are animated in pro-

gram 8-6. To make the physics easier to see, this system is a beaded string with transverse 
oscillations. However, to produce the ω2 term in (8.92), we have also attached each bead by ` 
a spring to an equilibrium position along the dotted line. In this case, the coupling between 
beads comes from the string, so the analog of (8.93) is 

4T 
ω2 = . (8.94)c ma 

The parameters in the system are chosen so that in terms of a reference frequency, ω0, 

ω2 = 25ω0
2 , ω2 = 24ω0

2 . (8.95)` c 

The properties of waves in this system differ dramatically as a function of ω. One way to 
see this is to go backwards and note that for real k, because sin2 ka must be between 0 and 2 

c 

1, ω is constrained, 

For k in this “allowed” region, 

ω` ≡ ωh .≤ ω ≤ 
q

ω2 + ω2 
` c (8.96) 

sin2 ka 
= 

2 ω2 

ω2 − ω2 
` 

c 
(8.97) 

is between 0 and 1, as is 

cos = . 2 ka ω2 − ω2 

2 ω2 
h (8.98) 

The two frequencies, ω` and ωh, are called low and high frequency cut-offs. The system of 
coupled pendulums supports traveling waves only for frequency ω between the high and low 
frequency cut-offs. It is only in this region that the dispersion relation can be satisfied for 
real ω and k. For ω < ω` or ω > ωh, the system oscillates, but there is nothing quite like 
a traveling wave. You can see this in program 8-6 by changing the frequency up and down 
with the arrow keys. 

For any ω, we can always solve the dispersion relation. However, in some regions of 
frequency, the result will be complex, as in (8.85). We expect ki = 0 in the allowed region 
(8.96). The solution of (8.92) for kr and ki as functions of ω are shown in the graphs in 
figure 8.12. Here, kr and ki are plotted against ω for the dispersion relation, (8.92), with 
ω` = 5ω0 and ωh = 7ω0. ki is the dotted line. Note the very rapid dependence of ki near the 
high and low frequency cut-offs. 
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Figure 8.12: kra and kia versus ω. 

As ω decreases, in the allowed region, (8.96), sin ka decreases. At the low frequency2 
cut-off, ω = ω`, sin ka and therefore k goes to zero. This means that as the frequency de-2 
creases, the wavelength of the traveling waves gets longer and longer, until at the cut-off 
frequency, it becomes infinite. At the low frequency cut-off, every pendulum in the infinite 
chain is oscillating in phase. The springs that couple them are then irrelevant because they 
always maintain their equilibrium lengths. This is possible precisely because ω` is the oscil-
lation frequency of the uncoupled pendulum, so that no coupling is required for an individual 
pendulum to swing at frequency ω`. 

If ω is below the low frequency cut-off, ω`, sin2 ka must become negative to satisfy the2 
dispersion relation, (8.92). Therefore sin ka must be a pure imaginary number2 

k = ±iki . (8.99) 

The general solution for the wave is then 

−iωtψ(x, t) = Ae−kix e −iωt + B ekix e . (8.100) 

In a finite system of coupled pendulums, both terms may be present. In a semi-infinite sys-
tem that is driven at x = 0 and extends to x → ∞, the constant B must vanish to avoid 
exponential growth of the wave at infinity. Thus the wave falls off exponentially at large x. 
Furthermore, the solution is a product of a real function of x and a complex exponential func-
tion of t. This is a standing wave. There is no traveling wave. You can see this in program 
8-6 at low frequencies. 

The physics of this oscillation below the low frequency cut-off is particularly clear in the 
extreme limit, ω → 0. At zero frequency, there is no motion. The analog of a forced oscilla-
tion problem is just to displace one pendulum from equilibrium and look to see what happens 



196 CHAPTER 8. TRAVELING WAVES 

to the rest. Clearly, what happens is that the displacement of the first pendulum causes a force 
on the next one because of the coupling spring that pulls it away from equilibrium, but not as 
far as the first. Its displacement is smaller than that of the first by some factor ² = e−kia. Then 
the second pendulum pulls the third, but again the displacement is smaller by the same factor. 
And so on! In an infinite system, this gives rise to the exponentially falling displacement in 
(8.100) for B = 0. As the frequency is increased, the effect of inertia (more precisely, the ma 
term in F = ma) increases the displacement of second (and each subsequent) block, until 
above the low frequency cut-off, the effect of inertia is large enough to compete on an equal 
footing with the effect of the restoring force, and a real traveling wave can be produced. 

The low frequency cut-off is not peculiar to the discrete system. It occurs any time there 
is a restoring force for k = 0 in the infinite system. Later, in chapter 11, we will see that a 
similar phenomena can occur in two- and three-dimensional systems even when there is no 
restoring force at k = 0. 

The high frequency cut-off, on the other hand, depends on the finite separation between 
blocks. As ω increases, in the allowed region, (8.96), sin ka increases, k increases, and 2 

ka ka therefore cos 2 decreases. At the high frequency cut-off, ω = ωh, sin ka = 1 and cos = 2 2 
0. But 

ka π
sin = 1 ⇒ k = (8.101)

2 a 
which, in turn means 

ika −ika e = e = −1. (8.102) 

Thus the displacement of the blocks simply alternates, because 

ψj = ψ(ja, t) ∝ eijπ = (−1)j . (8.103) 

This is as wavy as the discrete system can get. In a discrete system with interblock separation, 
a, the maximum possible real part of k is π (because k can be redefined by a multiple of 2π 

a a 
without changing the displacements of any of the blocks – see (5.28)). This bound is the 
origin of the high frequency cut-off. 

You can see this in program 8-6. The frequency starts out at 6ω0. At this point, kra is 
quite small (and ki = 0) and the wave looks smooth. As the frequency is increased toward 
ωh, the wave gets more and more jagged looking, until at ω = ωh, neighboring beads are 
moving in opposite directions. 

ka For ω > ωh, sin ka is greater than 1, and cos is negative. This implies that k has the 2 2 
form 

π 
k = ± iki . (8.104) 

a 
Then the general solution for the displacement is 

iπx/a −iωt + B ekix iπx/a −iωt ψ(x, t) = Ae−kix e e e e . (8.105) 
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As in (8.100), there is an exponentially falling term and an exponentially growing one. Here 
however, there is also a phase factor, eiπx/a, that looks as if it might lead to a traveling wave. 
But in fact, this is not really a phase. It simply produces the alternation of the displacement 
from one block to the next. We see this if we look only at the displacements of the blocks (as 
in (8.103), 

−kix −iωt + B (−1)j kix −iωt ψj = ψ(ja, t) = A (−1)j e e e e . (8.106) 

As for (8.100), in a semi-infinite system that extends to x → ∞, we must have B = 0, and 
there is no travelling wave. 

One of the striking things about program 8-6 is the very rapid switch from a traveling 
wave solution in the allowed region to a standing wave solution with a rapid exponential de-
cay of the amplitude in the high and low frequencies regions. You see this also in figure 8.12 
in the rapid change of ki near the cut-offs. The reason for this is that k has a square-root 
dependence on the frequency near the cut-offs. 

In the infinite system, the solution outside the allowed region is a pure standing wave. 
In the absence of damping, the work done by the force that produces the wave averages to 
zero over time. In a finite system, however, it is possible to transfer energy from one end 
of a system to the other, even if you are below the low frequency cut-off or above the high-
frequency cutoff. The reason is that in a finite system, both the A and B terms in (8.100) 
(or (8.106)) can be nonzero. If A and B are both real (or relatively real — that is if they 
have the same phase), then there is no energy transfer. The solution is the product of a real 
function of x (or j) and an oscillating exponential function of t. Thus it looks like a standing 
wave. However if A and B have different phases, then the oscillation looks something like 
a traveling wave and energy can be transferred. This process becomes exponentially less 
efficient as the length of the system increases. We will discuss this in more detail in chapter 
11. 

Chapter Checklist 

You should now be able to: 

i. Construct traveling wave modes of an infinite system with translation invariance; 

ii. Decompose a traveling wave into a pair of standing waves, and a standing wave into a 
pair of traveling waves “moving” in opposite directions; 

iii. Solve forced oscillation problems with traveling wave solutions and compute the forces 
acting on the system. 

iv. Compute the power and average power required to produce a wave, and define and 
calculate the impedance; 



198 CHAPTER 8. TRAVELING WAVES 

v. Analyze translation invariant systems with damping; 

vi. Understand the physical origins of high and low frequency cut-offs and be able to 
analyze the behavior of systems driven above and below the cut-off frequencies. 

Problems 

8.1. An infinite string with tension T and linear mass density ρ is stretched along the 
x axis. A force is applied in the y direction at x = 0 so as to cause the string at x = 0 to 
oscillate in the y direction with displacement 

A(t) = D cos ωt . 

This produces two traveling waves moving away from x = 0 in the ±x directions. 

a. Find the force applied at x = 0. 

b. Find the average power supplied by the force. 

8.2. For air at standard temperature and pressure, the pressure is 1.01 × 106 dyne/cm2 , 
the density is 1.29 × 10−3 gr/cm3 . Use these to find the displacement amplitude for sound 
waves with a frequency of 440 cycles/sec (Hertz) carrying a power per unit area of 10−3 

watts/cm2 . 

8.3. Consider the following circuit: 

V6 
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.......... .......... .......... ......... .......... ....... .......... 

All the capacitors have the same capacitance, C ≈ 0.00667µF , and all the inductors have the 
same inductance, L ≈ 150µH and the same resistance, R ≈ 15� (this is the same problem 
as (5.4), but with nonzero resistance). The wire at the bottom is grounded so that V0 = 0. 
This circuit is an electrical analog of the translation invariant systems of coupled mechanical 
oscillators that we have discussed in this chapter. 

a. Show that the dispersion relation for this system is 

R 2 
ω2 + iω = (1 − cos ka) . 

L LC 
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When you apply a harmonically oscillating signal from a signal generator through a coax-
ial cable to V6, different oscillating voltages will be induced along the line. That is if 

V6(t) = V cos ωt , 

then Vj (t) has the form 
Vj (t) = Aj cos ωt + Bj sin ωt . 

b. Find A1 and B1 and |A1 + iB1| and graph each of them versus ω from ω = 0√ 
to 2/ LC. Never mind simplifying complicated expressions, so long as you can graph 
them. How many of the resonances can you identify in each of the graphs? Hint: Use the 
trigonometric identity of problem (1.2e), 

´ 
sin 6x = sin x 

³ 
32 cos5 x − 32 cos3 x + 6 cos x 

to express A1 + iB1 in terms of cos ka. Note that this identity is true even if x is a complex 
number. Then use the dispersion relation to express cos ka in terms of ω. Find A1 and B1 by 
taking the real and imaginary parts of A1 + iB1. Finally, program a computer to construct 
the graphs.6 

c. Find the positions of the resonances directly using the arguments of chapter 5, and 
show that they are where you expect them. 

6This hint dates from the days before Mathematica was generally available. You may choose to to the problem 
differently, and that is OK as long as you explain clearly what you are doing and understand it! 
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