MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Practice Exam \#1

Problem 1 (30 points) Collision Products

A certain collision process in high energy physics produces a number of biproducts. When the biproducts include a pair of elementary particles A and B the energies of those particles, E_{A} and E_{B}, are distributed according to the joint probability density

$$
\begin{aligned}
p\left(E_{A}, E_{B}\right) & =\frac{4 E_{B}\left(E_{A}-E_{B}\right)}{\Delta^{4}} \exp \left[-\left(E_{A}+E_{B}\right) / \Delta\right] & & \text { for } E_{A}>0 \text { and } E_{A}>E_{B}>0 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

Δ is a parameter with the units of energy. A contour plot of $p\left(E_{A}, E_{B}\right)$ is shown above. Note that the energy E_{A} is always positive and greater than the energy E_{B}.
a) Find $p\left(E_{B}\right)$. Sketch the result.
b) Find the conditional probability density $p\left(E_{A} \mid E_{B}\right)$. Sketch the result.
c) Are E_{A} and E_{B} statistically independent? Explain your reasoning.

The collisions are statistically independent random events that occur at some uniform rate in time. The pair A and B only occurs in a fraction f of the collisions. When the pair is produced, it is detected with 100% efficiency. When the pair is not produced, there are no competing background events.
d) If the overall collision rate is 10^{6} per hour, how long must one run the experiment in order that the uncertainty in the determination of f is of the order of one part in 10^{4} of the value of f measured in that run? Note: one does not need the answers to a), b), or c) to answer this question.

Problem 2 (30 points) Polar Molecules

In a particular situation polar molecules (molecules possessing a permanent electric dipole moment) can be adsorbed on a surface creating a dipole layer with a total electric dipole moment \mathcal{P} that remains finite even when the electric field perpendicular to the surface \mathcal{E} goes to zero. Expressions for two important response functions in this system are given below.

$$
\begin{gathered}
\chi_{T} \equiv\left(\frac{\partial \mathcal{P}}{\partial \mathcal{E}}\right)_{T}=\left(a+\frac{b}{T}\right) N+3 c N \mathcal{E}^{2} \\
\left(\frac{\partial T}{\partial \mathcal{E}}\right)_{\mathcal{P}}=\frac{a T^{2}+b T+3 c T^{2} \mathcal{E}^{2}}{b \mathcal{E}-d T^{2}}
\end{gathered}
$$

In these expressions a, b, c and d are constants and N is the number of molecules. One also knows that $\mathcal{P}=\mathcal{P}_{0}$ when $T=T_{0}$ and $\mathcal{E}=0$. Find an analytic expression for the electric dipole moment \mathcal{P}.

Problem 3 (40 points) Molecular Solid

In a particular molecular solid the individual molecules are localized at specific lattice sites and possess no center of mass motion. However, each of the N molecules is free to rotate about a fixed direction in space which we will designate as the z direction. As far as the rotational motion is concerned the molecules can be considered to be non-interacting. The classical microscopic state of each molecule is specified by a rotation angle $0 \leq \theta<2 \pi$ and a canonically conjugate angular momentum $-\infty<l<\infty$ about the z axis. The energy of a single molecule is independent of θ and depends quadratically on l. Thus the Hamiltonian for the system is given by

$$
\mathcal{H}=\sum_{i=1}^{N} \frac{l_{i}^{2}}{2 I}
$$

where I is the moment of inertia of a molecule about the z axis.
a) Represent the system by a microcanonical ensemble where the energy lies between E and $E+\Delta$. Find an expression for the phase space volume Ω. Use Sterling's approximation to simplify your result. [It may be helpful to consult the attached information sheet.]
b) Based on your calculations in a) find the probability density $p(\theta)$ for the orientation angle of a single molecule and explain your method.
c) The probability density $p(l)$ for the angular momentum of a single molecule can be written in the form $p(l)=\Omega^{\prime} / \Omega$ where $\Omega=\Omega(E, N)$ is the quantity you found in a). Find Ω^{\prime}. Do not try to simplify your answer. Do explain how to eliminate E from your expression for $p(l)$.
d) Find the energy of the system as a function of temperature, $E(T, N)$.

PARTIAL DERIVATIVE RELATIONSHIPS

Let x, y, z be quantities satisfying a functional relation $f(x, y, z)=0$. Let w be a function of any two of x, y, z. Then

$$
\begin{gathered}
\left(\frac{\partial x}{\partial y}\right)_{w}\left(\frac{\partial y}{\partial z}\right)_{w}=\left(\frac{\partial x}{\partial z}\right)_{w} \\
\left(\frac{\partial x}{\partial y}\right)_{z}=\frac{1}{\left(\frac{\partial y}{\partial x}\right)_{z}} \\
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
\end{gathered}
$$

COMBINATORIAL FACTS

There are K ! different orderings of K objects. The number of ways of choosing L objects from a set of K objects is

$$
\frac{K!}{(K-L)!}
$$

if the order in which they are chosen matters, and

$$
\frac{K!}{L!(K-L)!}
$$

if order does not matter.

STERLING'S APPROXIMATION

When $K \gg 1$

$$
\ln K!\approx K \ln K-K \quad \text { or } \quad K!\approx(K / e)^{K}
$$

DERIVATIVE OF A LOG

$$
\frac{d}{d x} \ln u(x)=\frac{1}{u(x)} \frac{d u(x)}{d x}
$$

VOLUME OF AN α DIMENSIONAL SPHERE OF RADIUS R

$$
\frac{\pi^{\alpha / 2}}{(\alpha / 2)!} R^{\alpha}
$$

LIMITS

$\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
$\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
$\lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0)$
$\lim _{n \rightarrow \infty} x^{n}=0 \quad(|x|<1)$
$\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad($ any $x)$
$\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad(\operatorname{any} x)$

INTEGRALS

$\int e^{a x} d x=\frac{e^{a x}}{a}$
$\int x e^{a x} d x=\frac{e^{a x}}{a^{2}}(a x-1)$
$\int x^{2} e^{a x} d x=\frac{e^{a x}}{a^{3}}\left(a^{2} x^{2}-2 a x+2\right)$
$\int \frac{d x}{1+e^{x}}=\ln \left[\frac{e^{x}}{1+e^{x}}\right]$

WORK IN SIMPLE SYSTEMS

System	Intensive quantity	Extensive quantity	Work
Hydrostatic system	P	V	$-P d V$
Wire	\mathcal{F}	L	$\mathcal{F} d L$
Surface	\mathcal{S}	A	$\mathcal{S} d A$
Reversible cell	E	Z	$E d Z$
Dielectric material	\mathcal{E}	\mathcal{P}	$\mathcal{E} d \mathcal{P}$
Magnetic material	H	M	$H d M$

DEFINITE INTEGRALS

For integer n and m

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-x} d x=n! \\
& \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x=\sqrt{\pi} \\
& \left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2} / 2 \sigma^{2}} d x=1 \cdot 3 \cdot 5 \cdots(2 n-1) \sigma^{n} \\
& \int_{0}^{\infty} x e^{-x^{2}} d x=\frac{1}{2} \\
& \int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{n!m!}{(m+n+1)!}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

