MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

Solutions, Exam \#1

Problem 1 (30 points) Quantum Dots
a) Use Bayes' theorem: $p(x \mid y)=p(x, y) / p(y)$. We are given $p(x, y)$ so we must first find $p(y)$.

$$
\begin{aligned}
p(y) & =\int p(x, y) d x=\frac{1}{L^{3}} \int_{0}^{L}(x+y) d x \\
& =\frac{1}{L^{3}}\left(L^{2} / 2+y L\right)=\frac{1}{L}(1 / 2+y / L) \\
p(x \mid y) & =\frac{p(x, y)}{p(y)}=\frac{(x+y) / L^{3}}{(1 / 2+y / L) / L}=\frac{1}{\underline{L}} \frac{(x / L+y / L)}{(1 / 2+y / L)}
\end{aligned}
$$

x and y are not statistically independent. You could either point out that $p(x, y) \neq p(x) p(y)$ or that $p(x \mid y)$ depends on y.
b)

$$
M \leq \eta \text { in the shaded region in the figure to the left. }
$$

$$
\begin{aligned}
P_{M}(\eta) & =\frac{1}{L^{3}} \int_{0}^{\eta}\left(\int_{0}^{\eta}(x+y) d y\right) d x \\
& =\frac{1}{L^{3}} \int_{0}^{\eta}\left(\eta x+\eta^{2} / 2\right) d x \\
& =\frac{1}{L^{3}}\left(\eta^{3} / 2+\eta^{3} / 2\right)=\frac{\eta^{3}}{L^{3}} \\
p_{M}(\eta) & =\frac{d P_{M}(\eta)}{d \eta}=\frac{3}{\underline{L}}(\eta / L)^{2}
\end{aligned} \text { for } 0 \leq \eta \leq L
$$

Problem 2 (30 points) A Real Gas

Use the first law, solve for ϕQ, expand $d U$, set $\phi Q=0$.

$$
\begin{aligned}
d U & =\not Q Q+\not Q=\not Q Q-P d V \\
d Q & =d U+P d V \\
& =\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) d V \\
& =\left(2 b V^{2 / 3} T\right) d T+\left(-(2 / 3) a V^{-5 / 3}+(2 / 3) b V^{-1 / 3} T^{2}+(2 / 3) a V^{-5 / 3}+(2 / 3) b V^{-1 / 3} T^{2}\right) d V \\
& =\left(2 b V^{2 / 3} T\right) d T+\left((4 / 3) b V^{-1 / 3} T^{2}\right) d V=0 \\
(2 / 3) T^{2} d V & =-V T d T \rightarrow \frac{d V}{V}=-(3 / 2) \frac{d T}{T} \rightarrow \ln \left(V / V_{0}\right)=-(3 / 2) \ln \left(T / T_{0}\right) \\
\frac{V}{V_{0}} & =\left(\frac{T}{T_{0}}\right)^{-3 / 2}
\end{aligned}
$$

Problem 3 (40 points) Ultra-relativistic Gas in One Dimension
a)

$$
\begin{aligned}
\Phi & =(\text { number of choices for } s)^{N} \times\left[\int_{0}^{L} d x\right]^{N} \times \int_{\sum p_{i} \leq E / c} d p_{1} d p_{2} \cdots d p_{N} \times \frac{1}{\hbar^{N} N!} \\
& =2^{N} \times L^{N} \times \frac{1}{N!}\left(\frac{E}{c}\right)^{N} \times \frac{1}{\hbar^{N} N!} \\
& =\left(\frac{1}{N!}\right)^{2}\left(\frac{2 L E}{\hbar c}\right)^{N} \\
\Omega & =\Delta\left(\frac{\partial \Phi}{\partial E}\right)_{N, L}=\left(\frac{1}{N!}\right)^{2}\left(\frac{2 L E}{\hbar c}\right)^{N}\left(\frac{N \Delta}{E}\right)
\end{aligned}
$$

b)

$$
d E=T d S+\mathcal{F} d L \quad \rightarrow \quad d S=\frac{1}{T} d E-\frac{\mathcal{F}}{T} d L
$$

$$
\begin{aligned}
S & =k_{B} \ln \Omega \\
& =k_{B}\left[N \ln \left(\frac{2 L E}{\hbar c}\right)-2 \ln N!\right] \approx k_{B}\left[N \ln \left(\frac{2 L E}{\hbar c}\right)-2 N \ln N+2 N\right] \\
& =N k_{B}\left[\ln \left(\frac{2}{\hbar c} \frac{L}{N} \frac{E}{N}\right)+2\right] \quad \text { which is properly extensive } \\
\left(\frac{\partial S}{\partial E}\right)_{L} & =\frac{1}{T}=N k_{B} \frac{1}{()} \frac{()}{E} \Rightarrow \underline{E=N k_{B} T}
\end{aligned}
$$

c)

$$
\left(\frac{\partial S}{\partial L}\right)_{E}=-\frac{\mathcal{F}}{T}=N k_{B} \frac{1}{()} \frac{()}{L} \Rightarrow \underline{\mathcal{F}=-N k_{B} T / L}
$$

d) In b) you found an expression for the entropy of the gas. The entropy will be constant when the product $L E$ is constant. Replacing E with the expression found later in b) gives $L T$ is constant on any adiabatic path. Therefore the adiabat passing through the point (T_{0}, L_{0}) is given by

$$
\frac{L(T)}{L_{0}}=\left(\frac{T}{T_{0}}\right)^{-1}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

