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Problem 1 (35 points) Weakly Interacting Bose Gas
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c) The model obeys the 3rd law because limT→0 S(T, V ) = 0.
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Problem 2 (30 points) Carnot heat engine

a) For a reversible process d/Q = TdS. Also, for a constant volume process, dQ = CV dT .
Thus
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b) The efficiency of an engine cycle η is defined as (work out)/(heat extracted at the higher
temperature). Thus
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c) Since the engine is run in cycles and entropy is a state function, the entropy change in
each cycle is zero, as is the the total entropy change in the process.

One can see this as well by applying conservation of energy.

Heat out at high T - Heat dumped at low T = Work out

∆Q1 = CV (T2 − T1)−∆Wout 2→1

= T1 ln(T2/T1)

∆S1 = ∆Q1/T1 = CV ln(T2/T1) = −∆S2 found in a) above
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Problem 3 (35 points) A Classical Ultra-relativistic Gas

a) For one atom
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For the whole gas
1
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b) p(p) ∝ exp[−cp/kBT ] p2. The normalization integral was done in a).
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