# MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

Physics Department

## Final Exam, Solutions

Problem 1 (20 points) Binary Alloy
a) Find the number of different ways of choosing the $n \alpha$-sites to be vacated and occupied by $\beta$ atoms.

$$
\#_{\alpha}=\frac{N!}{n!(N-n)!}
$$

b) Find the number of different ways of choosing the $n \beta$-sites from which to take the $\beta$ atoms.

$$
\#_{\beta}=\frac{N!}{n!(N-n)!}
$$

c) Find the entropy of the system as a function of $n$.

$$
S(n)=k_{B} \ln \Omega=k_{B} \ln \left(\#_{\alpha} \times \#_{\beta}\right)=2 k_{B} \ln \left(\frac{N!}{n!(N-n)!}\right)
$$

d) Find $U(T, N)$.

$$
\begin{gathered}
S(n)=2 k_{B}[N \ln N-n \ln n-(N-n) \ln (N-n)-N+n+(N-n)] \\
\frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{N}=\left(\frac{\partial S}{\partial n}\right)_{N} \underbrace{\left(\frac{\partial n}{\partial U}\right)_{N}}_{1 / \epsilon}=\frac{2 k_{B}}{\epsilon}[-1-\ln n+1+\ln (N-n)] \\
\frac{\epsilon}{2 k_{B} T}=-\ln \left(\frac{n}{N-n}\right) \rightarrow \frac{n}{N-n}=e^{-\epsilon / 2 k_{B} T}
\end{gathered}
$$

Solving for $n$ gives

$$
n=\frac{N}{1+e^{\epsilon / 2 k_{B} T}} \rightarrow \quad U(T, N)=\frac{N \epsilon}{1+e^{\epsilon / 2 k_{B} T}}
$$

Problem 2 (20 points) DNA Model
a) This is a classical system with $N$ non-degenerate states with energies $E_{n}=n \epsilon$.

$$
Z_{1}=\sum_{n=0}^{N} e^{-n \epsilon / k_{B} T}
$$

b) When $k T \ll \epsilon$ one need consider only the lowest two energy states; this becomes an energy gap dominated situation.

$$
\begin{aligned}
\langle n\rangle & =\sum_{n=0}^{N} n \frac{e^{-n \epsilon / k_{B} T}}{Z} \\
& \approx \frac{0 e^{-0}+1 e^{-\epsilon / k_{B} T}}{e^{-0}+e^{-\epsilon / k_{B} T}}=\frac{e^{-\epsilon / k_{B} T}}{1+e^{-\epsilon / k_{B} T}} \\
& \approx \underline{e^{-\epsilon / k_{B} T}}
\end{aligned}
$$

c) When $k_{B} T \gg \epsilon$ one can approximate sums over $n$ by integrals. For example

$$
Z=\sum_{n=0}^{N} e^{-n \epsilon / k_{B} T}=\left(\frac{k_{B} T}{\epsilon}\right) \sum_{n=0}^{N} e^{-n \epsilon / k_{B} T}\left(\frac{\epsilon}{k_{B} T}\right) \approx \frac{k_{B} T}{\epsilon} \underbrace{\int_{0}^{\infty} e^{-x} d x}_{1}=\frac{k_{B} T}{\epsilon}
$$

d) In a similar manner

$$
\begin{aligned}
\langle n\rangle & =\sum_{n=0}^{N} n \frac{e^{-n \epsilon / k_{B} T}}{Z} \\
& =\sum_{n=0}^{N} \frac{n \epsilon}{k_{B} T} e^{-n \epsilon / k_{B} T}=\left(\frac{k_{B} T}{\epsilon}\right) \sum_{n=0}^{N} \frac{n \epsilon}{k_{B} T} e^{-n \epsilon / k_{B} T}\left(\frac{\epsilon}{k_{B} T}\right) \\
& \approx \frac{k_{B} T}{\epsilon} \underbrace{\int_{0}^{\infty} x e^{x} d x}_{1} \\
& \approx \frac{k_{B} T}{\epsilon}
\end{aligned}
$$

Alternatively use $Z_{1}=1 /(\beta \epsilon)$.

$$
\langle n\rangle=\frac{<U>}{\epsilon}=\frac{1}{\epsilon}\left(\frac{-1}{Z} \frac{\partial Z}{\partial \beta}\right)=\frac{1}{\epsilon}\left(\frac{-1}{Z}\right)\left(\frac{-Z}{\beta}\right)=\frac{k_{B} T}{\epsilon}
$$

Problem 3 (20 points) Spin Waves
a)

$$
D(\vec{k})=\frac{L_{x}}{2 \pi} \frac{L_{y}}{2 \pi} \frac{L_{z}}{2 \pi}=\frac{V}{\underline{(2 \pi)^{3}}}
$$

b)

$$
\begin{aligned}
\#(\omega) & =(\text { volume of sphere in k-space }) \times D(\vec{k}) \\
& =\frac{4}{3} \pi k^{3}(\omega) \frac{V}{(2 \pi)^{3}} \text { use } k=(\omega / a)^{1 / 2} \\
& =\frac{V}{6 \pi^{2}}\left(\frac{\omega}{a}\right)^{3 / 2} \\
D(\omega) & =\frac{d \#(\omega)}{d \omega}=\frac{V}{\frac{(2 \pi)^{2}}{} a^{-3 / 2} \omega^{1 / 2}}
\end{aligned}
$$


c)

$$
\begin{aligned}
U & =\int_{0}^{\infty}\langle\epsilon(\omega)\rangle D(\omega) d \omega \\
& =\frac{V}{(2 \pi)^{2}} a^{-3 / 2} \int_{0}^{\infty} \frac{\hbar \omega}{\left(e^{\hbar \omega / k_{B} T}-1\right)} \omega^{1 / 2} d \omega+\text { Z.P. contribution } \\
& =\frac{V}{(2 \pi)^{2}}\left(\frac{1}{\hbar a}\right)^{3 / 2}\left(k_{B} T\right)^{5 / 2} \underbrace{\int_{0}^{\infty} \frac{x^{3 / 2}}{e^{x}-1} d x}_{\equiv I}+\text { Z.P. contribution } \\
C_{V}(T, V) & =\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{5}{\frac{8 \pi^{2}}{}} k_{B} V\left(\frac{k_{B} T}{\hbar a}\right)^{3 / 2} I
\end{aligned}
$$

d) There is no energy gap behavior $\left(C_{V} \propto T^{n} e^{-\Delta / k_{B} T}\right)$ because of the integration over a continuous distribution of gaps $(\Delta=\hbar \omega)$, some of which are less than $k_{B} T$ for any physical $T$.

Problem 4 (20 points) Graphene
a)

$$
D(\vec{k})=\frac{L_{x}}{2 \pi} \frac{L_{y}}{2 \pi}=\frac{A}{(2 \pi)^{2}}
$$

b)

$$
\begin{aligned}
\#(\epsilon) & =2 \times(\text { area of disk in } \mathrm{k} \text {-space }) \times D(\vec{k}) \\
& =2 \times \pi k^{2}(\epsilon) \frac{A}{(2 \pi)^{2}} \text { use } k=\frac{\epsilon}{\hbar v} \\
& =\frac{A}{2 \pi}\left(\frac{1}{\hbar v}\right)^{2} \epsilon^{2} \\
D_{c}(\epsilon) & =\frac{d \#(\epsilon)}{d \epsilon}=\frac{A}{\pi}\left(\frac{1}{\hbar v}\right)^{2} \epsilon
\end{aligned}
$$

c)

d)
$\mu(T=0)$ rests at the last filled state at $T=0$ which is at the top of the valence band, so $\mu(T=0)=0$.
$D(\epsilon)$ is symmetric about $\epsilon=0$. If $\mu$ stays at $\epsilon=0$ the symmetry of $\langle n(\epsilon, T)\rangle$ assures that as $T$ increases the number of electrons lost from the valence band is exactly equal to the number of electrons appearing in the conduction band. Thus $\underline{\mu(T)=0}$ for all $T$ covered by this model.
e)

$$
\begin{aligned}
U & =\int_{-\infty}^{\infty} \epsilon\langle n(\epsilon, T)\rangle D(\epsilon) d \epsilon \\
& =2 \int_{0}^{\infty} \epsilon\langle n(\epsilon, T)\rangle D_{c}(\epsilon) d \epsilon \\
& =\frac{A}{\pi}\left(\frac{1}{\hbar v}\right)^{2} \int_{0}^{\infty} \frac{1}{\left(e^{\epsilon / k_{B} T}+1\right)} \epsilon^{2} d \epsilon \\
& =\frac{A}{\pi}\left(\frac{1}{\hbar v}\right)^{2}\left(k_{B} T\right)^{3} \underbrace{\int_{0}^{\infty} \frac{x^{2}}{\left(e^{x}+1\right)} d x}_{\equiv I} \\
& =\frac{A}{\pi}\left(\frac{1}{\hbar v}\right)^{2}\left(k_{B} T\right)^{3} I
\end{aligned}
$$

f)
$C_{A}(T)=(\partial U / \partial T)_{A}$ so $\underline{C_{A}(T) \text { will be proportional to } T^{2} \text {, that is the temperature exponent } n=2 . ~ . ~ . ~}$

Problem 5 (20 points) BEC
a)

$$
\begin{aligned}
N & =\int_{0}^{\infty}<n>D(\epsilon) d \epsilon \\
& =\int_{0}^{\infty} \frac{1}{e^{(\epsilon-\mu) / k_{B} T}-1}\left[\frac{V}{(2 \pi)^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \sqrt{\epsilon}\right] d \epsilon \\
& =\frac{V}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{\infty} \frac{\sqrt{\epsilon}}{e^{(\epsilon-\mu) / k_{B} T}-1} d \epsilon \\
& =\frac{V}{4 \pi^{2}}\left(\frac{2 m k_{B} T}{\hbar^{2}}\right)^{3 / 2} \underbrace{\int_{0}^{\infty} \frac{\sqrt{x}}{e^{(x-y)}-1} d x}_{\equiv I(y)} \\
n & =\frac{V}{4 \pi^{2}}\left(\frac{2 m k_{B} T}{\hbar^{2}}\right)^{3 / 2} I(y)
\end{aligned}
$$

b) Bose-Einstein condensation begins when the above condition is satisfied with $\mu=0$ which also means our dimensionless parameter $y=0$.

$$
n_{c}=\frac{V}{4 \pi^{2}}\left(\frac{2 m k_{B} T_{c}}{\hbar^{2}}\right)^{3 / 2} I(y=0)
$$

c)
$d U=T d S-P d V+\mu d N$; change independent variables to $T, V, N$ :

$$
d S=\left.\frac{\partial S}{\partial T}\right|_{T, V} d T+\left.\frac{\partial S}{\partial V}\right|_{T, N} d V+\left.\frac{\partial S}{\partial N}\right|_{T, V} d N
$$

So $\partial U /\left.\partial N\right|_{V, T}=\mu+T \partial S /\left.\partial N\right|_{T, V}$.
Now use Maxwell relation derivable from $d F=\ldots$ on the information sheet: $\partial S /\left.\partial N\right|_{T, V}=$ $-\partial \mu /\left.\partial T\right|_{T, N}$. so

$$
\left.\frac{\partial U}{\partial N}\right|_{V, T}=\mu-\left.T \frac{\partial \mu}{\partial T}\right|_{N, V}=-\left.T^{2} \frac{\partial}{\partial T} \frac{\mu}{T}\right|_{N, V}=\left.\frac{\partial(\beta \mu)}{\partial \beta}\right|_{N, V}
$$

In the Bose condensed phase $\mu=0$ and is independent of the temperature, so both terms in $\partial U / \partial N$ are zero.
d)

From answer to part a)

$$
n=\frac{1}{4 \pi^{2}}\left(\frac{2 m k}{\hbar^{2}}\right)^{3 / 2} T^{3 / 2} \int_{0}^{\infty} \frac{\sqrt{x} d x}{e^{(x-y)}-1} \quad C \times \frac{N}{V} \beta^{3 / 2}=\int_{0}^{\infty} \frac{\sqrt{x} d x}{e^{(x-y)}-1}
$$

where $C$ is a collection of constants.
Differentiate this equation implicitly w.r.t. $\beta$ and $y=\mu \beta$,

$$
\frac{3}{2} \times \frac{N}{V} \beta^{1 / 2}=\left(\int_{0}^{\infty} \sqrt{x} d x \frac{e^{(x-y)}}{\left(e^{(x-y)}-1\right)^{2}}\right) \frac{d y}{d \beta}
$$

Both the term on the left and the term in () are positive definite. Thus $d y / d \beta>0$.

MIT OpenCourseWare
http://ocw.mit.edu

### 8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

