MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Exam \#1

Problem 1 (35 points) Isotopic Abundance

A certain element has three stable isotopes with atomic weights $A=n, n+1$, and $n+2 . n$ is a known integer. The probability of occurrence of each, $p(\mathrm{~A})$, is shown in the figure. The scattering of neutrons from the isotopes is governed by an atomic-weight-dependent scattering amplitude $f(A)$. It is known that

$$
\begin{aligned}
f(n) & =2 f_{0} \\
f(n+1) & =f_{0} \\
f(n+2) & =4 f_{0}
\end{aligned}
$$

where f_{0} is a constant.
a) Make a carefully labeled sketch of the cumulative function $P(A)$ which displays all of its important features.
b) Find $<f>$. Coherent neutron scattering from a crystal is proportional to $<f>^{2}$.
c) Find the variance of $f, \operatorname{Var}(f) \equiv<(f-<f>)^{2}>$. Incoherent neutron scattering from a crystal is proportional to $\operatorname{Var}(f)$.

Chemists are able to grow nanocrystals of this element, each containing exactly 64 atoms. Let M be the total mass of a nanocrystal.
d) The minimum possible value of M under these circumstances is $64 n m_{0}$ where m_{0} is the proton mass. What is the exact probability that a nanocrystal will have a mass equal to $(64 n+1) m_{0}$?
e) What is the approximate probability density $p(M)$ for the mass M of a nanocrystal in terms of $\langle A\rangle, \operatorname{Var}(A)$ [do not calculate either of these], and m_{0} ?

Problem 2 (30 points) Field Reversals

The earth's magnetic field changes suddenly at random times as the earth evolves. A possible model for this behavior gives the following joint probability density for the magnetic fields B_{1} and B_{2} measured at two different times separated by t years.

$$
\begin{aligned}
p\left(B_{1}, B_{2}\right)= & \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp [-t / \tau] \delta\left(B_{1}-B_{2}\right) \exp \left[-B_{1}^{2} / 2 \sigma^{2}\right] \\
& +\frac{1}{2 \pi \sigma^{2}}(1-\exp [-t / \tau]) \exp \left[-\left(B_{1}^{2}+B_{2}^{2}\right) / 2 \sigma^{2}\right]
\end{aligned}
$$

τ is a parameter of the order of 5×10^{5} years and σ is a parameter of the order of $1 / 2$ gauss.
a) Find $p\left(B_{1}\right)$. Sketch the result.
b) Find the conditional probability density $p\left(B_{2} \mid B_{1}\right)$. Sketch the result.
c) Are B_{1} and B_{2} statistically independent? Explain your reasoning.

Problem 3 (35 points) Rutherford Scattering

In Rutherford scattering of mono-energetic α particles from nuclei, the dependence of the scattering angle θ on the impact parameter b is given by

$$
\theta=2 \operatorname{arccot}(b / l)
$$

(as shown in the figure above) where l is a characteristic length. The impact parameter b is the closest distance the α particle would come to the nucleus if there were no Coulomb interaction.

In the following assume that the α particle flux is uniform over a disk of radius R centered on the nucleus. Thus b is in the range from 0 to R.

a) Find $p(b)$ and sketch the result.
b) What is the smallest possible scattering angle?
c) Find $p(\theta)$ and sketch the result.

Derivatives of Trigonometric Functions

$$
\begin{aligned}
& \frac{d \sin x}{d x}=\cos x \\
& \frac{d \cos x}{d x}=-\sin x \\
& \frac{d \tan x}{d x}=\sec ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d \cot x}{d x}=-\csc ^{2} x \\
& \frac{d \sec x}{d x}=\sec x \tan x \\
& \frac{d \csc x}{d x}=-\csc x \cot x
\end{aligned}
$$

Definite Integrals

For integer n and m

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-x} d x=n! \\
& \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x=\sqrt{\pi} \\
& \left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2} / 2 \sigma^{2}} d x=1 \cdot 3 \cdot 5 \cdots(2 n-1) \sigma^{n} \\
& \int_{0}^{\infty} x e^{-x^{2}} d x=\frac{1}{2} \\
& \int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{n!m!}{(m+n+1)!}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

