MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Exam \#1

Problem 1 (30 points) Doping a Semiconductor

When diffusing impurities into a particular semiconductor the probability density $p(x)$ for finding the impurity a distance x below the surface is given by

$$
\begin{aligned}
p(x) & =(0.8 / l) \exp [-x / l]+0.2 \delta(x-d) & & x \geq 0 \\
& =0 & & x<0
\end{aligned}
$$

where l and d are parameters with the units of distance. The delta function arises because a fraction of the impurities become trapped on an accidental grain boundary a distance d below the surface.
a) Make a carefully labeled sketch of the cumulative function $P(x)$ which displays all of its important features. [You do not need to give an analytic expression for $P(x)$.]
b) Find $\langle x\rangle$.
c) Find the variance of $x, \operatorname{Var}(x) \equiv<(x-<x>)^{2}>$.

The contribution to the microwave surface impedance due to an impurity decreases exponentially with its distance below the surface as $e^{(-x / s)}$. The parameter s, the "skin depth", has the units of distance.
d) Find $\left\langle e^{(-x / s)}>\right.$.

Problem 2 (40 points) Collision Products

A certain collision process in high energy physics produces a number of biproducts. When the biproducts include a pair of elementary particles A and B the energies of those particles, E_{A} and E_{B}, are distributed according to the joint probability density

$$
\begin{aligned}
p\left(E_{A}, E_{B}\right) & =\frac{4 E_{B}\left(E_{A}-E_{B}\right)}{\Delta^{4}} \exp \left[-\left(E_{A}+E_{B}\right) / \Delta\right] & & \text { for } E_{A}>0 \text { and } E_{A}>E_{B}>0 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

Δ is a parameter with the units of energy. A contour plot of $p\left(E_{A}, E_{B}\right)$ is shown above. Note that the energy E_{A} is always positive and greater than the energy E_{B}.
a) Find $p\left(E_{B}\right)$. Sketch the result.
b) Find the conditional probability density $p\left(E_{A} \mid E_{B}\right)$. Sketch the result.
c) Are E_{A} and E_{B} statistically independent? Explain your reasoning.

The collisions are statistically independent random events that occur at some uniform rate in time. The pair A and B only occurs in a fraction f of the collisions. When the pair is produced, it is detected with 100% efficiency. When the pair is not produced, there are no competing background events.
d) If the overall collision rate is 10^{6} per hour, how long must one run the experiment in order that the uncertainty in the determination of f is of the order of one part in 10^{4} of the value of f measured in that run? Note: one does not need the answers to a), b), or c) to answer this question.

Problem 3 (30 points) Equipment Failure
A graduate student begins an experiment which depends on two critical pieces of apparatus: a dilution refrigerator and a sophisticated laser system. Each is prone to failure, the failures are statistically independent, and a failure of either one ends the experimental run. The probability of failure after a time t for the refrigerator is given by

$$
\begin{aligned}
p\left(t_{r}\right) & =(1 / \alpha) \exp \left[-t_{r} / \alpha\right] & & t_{r} \geq 0 \\
& =0 & & t_{r}<0
\end{aligned}
$$

and for the laser by

$$
\begin{aligned}
p\left(t_{l}\right) & =(1 / \beta) \exp \left[-t_{l} / \beta\right] & & t_{l} \geq 0 \\
& =0 & & t_{l}<0
\end{aligned}
$$

We want to find the probability density for the duration of an experimental run T; that is, we want to find the probability density for $T \equiv \operatorname{Min}\left(t_{r}, t_{l}\right)$.
a) Find an analytic expression for the cumulative function $P(T)$. No short cuts here; do the integrals. [Hint: a bit of thought beforehand can decrease the work considerably.]
b) Find the probability density $p(T)$ and sketch the result.

Integrals

$$
\begin{aligned}
& \int e^{a x} d x=\frac{e^{a x}}{a} \\
& \int x e^{a x} d x=\frac{e^{a x}}{a^{2}}(a x-1) \\
& \int x^{2} e^{a x} d x=\frac{e^{a x}}{a^{3}}\left(a^{2} x^{2}-2 a x+2\right) \\
& \int \frac{d x}{1+e^{x}}=\ln \left[\frac{e^{x}}{1+e^{x}}\right]
\end{aligned}
$$

Definite Integrals

For integer n and m

$$
\begin{aligned}
& \int_{0}^{\infty} x^{n} e^{-x} d x=n! \\
& \int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x=\sqrt{\pi} \\
& \left(2 \pi \sigma^{2}\right)^{-1 / 2} \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2} / 2 \sigma^{2}} d x=1 \cdot 3 \cdot 5 \cdots(2 n-1) \sigma^{n} \\
& \int_{0}^{\infty} x e^{-x^{2}} d x=\frac{1}{2} \\
& \int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{n!m!}{(m+n+1)!}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

