MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Exam \#2

Problem 1 (25 points) Bose Gas
In a weakly interacting gas of Bose particles at low temperature the expansion coefficient α and the isothermal compressibility \mathcal{K}_{T} are given by

$$
\begin{aligned}
\alpha & \left.\equiv \frac{1}{V} \frac{\partial V}{\partial T}\right|_{P}=\frac{5}{4} \frac{a}{c} T^{3 / 2} V^{2}+\frac{3}{2} \frac{b}{c} T^{2} V^{2} \\
\mathcal{K}_{T} & \equiv-\left.\frac{1}{V} \frac{\partial V}{\partial P}\right|_{T}=\frac{1}{2 c} V^{2}
\end{aligned}
$$

where a, b and c are constants. It is known that the pressure goes to zero in the limit of large volume and low temperature. Find the equation of state $P(T, V)$.

Problem 2 (35 points) Hydrostatic System
The internal energy U of a certain hydrostatic system is given by

$$
U=A P^{2} V
$$

where the constant A has the units of (pressure) $)^{-1}$.
a) Find the slope, $d P / d V$, of an adiabatic path $(d Q=0)$ in the $P-V$ plane in terms of A, P and V.

Assume that one also knows the thermal expansion coefficient α and the isothermal compressibility \mathcal{K}_{T}.

$$
\left.\alpha \equiv \frac{1}{V} \frac{\partial V}{\partial T}\right|_{P} \quad \text { and } \quad \mathcal{K}_{T} \equiv-\left.\frac{1}{V} \frac{\partial V}{\partial P}\right|_{T}
$$

b) Find the slope, $d P / d V$, of an isothermal path in the $P-V$ plane.
c) Find the constant volume heat capacity, C_{V}, in terms of the known quantities.

Problem 3 (40 points) Molecular Solid

In a particular molecular solid the individual molecules are localized at specific lattice sites and possess no center of mass motion. However, each of the N molecules is free to rotate about a fixed direction in space which we will designate as the z direction. As far as the rotational motion is concerned the molecules can be considered to be noninteracting. The classical microscopic state of each molecule is specified by a rotation angle $0 \leq \theta<2 \pi$ and a canonically conjugate angular momentum $-\infty<l<\infty$ about the z axis. The energy of a single molecule is independent of θ and depends quadratically on l. Thus the Hamiltonian for the system is given by

$$
\mathcal{H}=\sum_{i=1}^{N} \frac{l_{i}^{2}}{2 I}
$$

where I is the moment of inertia of a molecule about the z axis.
a) Represent the system by a microcanonical ensemble where the energy lies between E and $E+\Delta$. Find an expression for the phase space volume Ω. Use Sterling's approximation to simplify your result. [It may be helpful to consult the attached information sheet.]
b) Based on your calculations in a) find the probability density $p(\theta)$ for the orientation angle of a single molecule and explain your method.
c) The probability density $p(l)$ for the angular momentum of a single molecule can be written in the form $p(l)=\Omega^{\prime} / \Omega$ where $\Omega=\Omega(E, N)$ is the quantity you found in a). Find Ω^{\prime}. Do not try to simplify your answer. Do explain how to eliminate E from your expression for $p(l)$.
d) Find the energy of the system as a function of temperature, $E(T, N)$.

PARTIAL DERIVATIVE RELATIONSHIPS

Let x, y, z be quantities satisfying a functional relation $f(x, y, z)=0$. Let w be a function of any two of x, y, z. Then

$$
\begin{gathered}
\left(\frac{\partial x}{\partial y}\right)_{w}\left(\frac{\partial y}{\partial z}\right)_{w}=\left(\frac{\partial x}{\partial z}\right)_{w} \\
\left(\frac{\partial x}{\partial y}\right)_{z}=\frac{1}{\left(\frac{\partial y}{\partial x}\right)_{z}} \\
\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1
\end{gathered}
$$

COMBINATORIAL FACTS

There are K ! different orderings of K objects. The number of ways of choosing L objects from a set of K objects is

$$
\frac{K!}{(K-L)!}
$$

if the order in which they are chosen matters, and

$$
\frac{K!}{L!(K-L)!}
$$

if order does not matter.

STERLING'S APPROXIMATION

When $K \gg 1$
$\ln K!\approx K \ln K-K \quad$ or $\quad K!\approx(K / e)^{K}$

DERIVATIVE OF A LOG

$$
\frac{d}{d x} \ln u(x)=\frac{1}{u(x)} \frac{d u(x)}{d x}
$$

LIMITS

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\ln n}{n}=0 \\
& \lim _{n \rightarrow \infty} \sqrt[n]{n}=1 \\
& \lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0) \\
& \lim _{n \rightarrow \infty} x^{n}=0 \quad(|x|<1) \\
& \lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad(\text { any } x) \\
& \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad(\text { any } x)
\end{aligned}
$$

WORK IN SIMPLE SYSTEMS

System	Intensive quantity	Extensive quantity	Work
Hydrostatic system	P	V	$-P d V$
Wire	\mathcal{F}	L	$\mathcal{F} d L$
Surface	\mathcal{S}	A	$\mathcal{S} d A$
Reversible cell	E	Z	$E d Z$
Dielectric material	\mathcal{E}	\mathcal{P}	$\mathcal{E} d \mathcal{P}$
Magnetic material	H	M	$H d M$

VOLUME OF AN α DIMENSIONAL SPHERE OF RADIUS R

$$
\frac{\pi^{\alpha / 2}}{(\alpha / 2)!} R^{\alpha}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

