
Refrigerator Run cycle backwards, extract heat at cold
 

end, dump it at hot end 

HEAT EXTRACTED (COLD END) 

WORK DONE ON SUBSTANCE 
= 

|QC|
∆W 

= 
|QC|

|QH| − |QC| 

For the special case of a quasi-static Carnot cycle
 

TC
 =
 
TH − TC
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•	 As with engine, can show Carnot cycle is optimum.
 

•	 Practical: increasingly difficult to approach T = 0. 
  

•	 Philosophical: T = 0  is point at which no more 

heat can be extracted. 
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Heat Pump Run cycle backwards, but use the heat
 

dumped at hot end. 

HEAT DUMPED (HOT END) 

WORK DONE ON SUBSTANCE 
= 

|QH|
∆W 

= 
|QH|

|QH| − |QC| 

For the special case of a quasi-static Carnot cycle
 

TH
 =
 
TH − TC
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55o 

70o 

F subsurface temp. at 40o latitude 

→ TC = 286K 

F room temperature 

→ TH = 294K 

|QH|
∆W 

≤ ∼ 37 
294 

8 
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3rd law lim S = S0
 
T→0 

At T = 0  the entropy of a substance approaches a 

constant value, independent of the other thermody

namic variables. 

• Originally a hypothesis 

• Now seen as a result of quantum mechanics 

Ground state degeneracy g (usually 1) 

⇒ S → k ln g (usually 0) 
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∂S
 

Consequences = 0  
∂x T=0 

Example: A hydrostatic system
 

1 
 
∂V 

 
1 

 
∂S 

 
α ≡ = − → 0 as  T → 0 

V ∂T P V ∂P T 

V Tα2 
CP − CV = KT 

→ 0 as  T → 0 

S(T )−S(0) =
 T 

T=0 

CV (T
') 

T ' dT ' ⇒ CV (T ) → 0 as  T → 0 
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Ensembles 

•	 Microcanonical: E and N fixed
 

Starting point for all of statistical mechanics
 

Difficult to obtain results for specific systems
 

•	 Canonical: N fixed, T specified; E varies
 

Workhorse of statistical mechanics
 

• Grand Canonical: T and µ specified; E and N vary
 

Used when the the particle number is not fixed
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If the density in phase space depends only on the energy at that 
point, 

ρ({p, q}) = ρ(H{p, q}), 

carrying out the indicated derivatives shows that 

∂ρ 
= 0. 

∂t 

This proves that ρ = ρ(H{p, q}) is a sufficient condition for an 
equilibrium probability density in phase space. 
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 √   √  
−1/2 −E/2<E>  p(px) =  √ 

3 
e N e1/2 √ 

1 
e 

4πm 3N < E >  

1 −E/2<E>= √ e 
4πm < E > 

Now use E = p2/2m and < E >=< p2 > /2m.x x 

1 2 2−p /2<p >xp(px) =   e x

2π < p2 >x
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d) Let Ω' be the volume in a phase space for N − 1 oscillators of total energy E − t where 
t = (1/2m)pi 

2 + (mω2/2)qi 
2 . Since the oscillators are all similar, < t >= E/N = kT . 

p(pi, qi) = Ω'/Ω 

Ω' 
 
2π 
 N−1 

1
(E − t)N−1 =

ω (N − 1)!   −1   N
Ω' 2π N ! E − t 1 

=
Ω ω (N − 1)! E E − t � �Nω N t

= 1 − 
2π E − t E' v- " ' v- " 

≈<E>−1 ≈exp[−E/<E>] 

1 
p(pi, qi) = exp[−t/ < t >]

(2π/ω) < t > 

2 2 = 
1 

exp[−pi /2mkT ] exp[−(mω2/2kT )qi ](2π/ω)kT 

= √ 
1 

exp[−pi 
2/2mkT ]  1

exp[−qi 
2/2(kT/mω2)] 

2πmkT 2π(kT/mω2) 

= p(pi) × p(qi) ⇒ pi and qi are S.I. 
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2 

1 

1 IS THE SUBSYSTEM OF INTEREST.
	

2, MUCH LARGER, IS THE REMAINDER OR THE "BATH".
	

ENERGY CAN FLOW BETWEEN 1 AND 2.
	

THE TOTAL, 1+2, IS ISOLATED AND REPRESENTED BY A
	
MICROCANONICAL ENSEMBLE.
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For the entire system (microcanonical) one has 

volume of accessible phase space consistent with X 
p(system in state X) =  

Ω(E) 

In particular, for our case 

p({p1, q1}) ≡ p(subsystem at {p1, q1}; remainder undetermined) 

Ω1({p1, q1})Ω2(E − E1) = 
Ω(E) 
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k ln p({p1, q1}) =  k lnΩ1 + k lnΩ2(E − E1)− k lnΩ(E)
  v   v   v   
k ln 1 = 0  S2(E − E1) S(E) 

∂S2(E2)S2(E − E1) ≈ S2(E) − E1
∂E2 v  

evaluated at E2 = E 
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H1({p1, q1})k ln p({p1, q1}) =  − +S2(E) − S(E)
 v  T
 v  

The first term on the right depends on the specific 

state of the subsystem. 

The remaining terms on the right depend on the reser

voir and the average properties of the subsystem. 
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∫ 

In all cases, including those where the system is too 

small for thermodynamics to apply, 

H1({p1, q1}) p({p1, q1}) ∝ exp[− ]
kT 

H1({p1, q1})exp[− ]
kT= H1({p1, q1})exp[− ]{dp1, dq1}

kT 
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If thermodynamics does apply, one can go further. 

S(E) = S1(< E1 >) + S2(< E2 >) 

S2(E) − S(E) = 

S2(E) − S2(< E2 >) −S1(< E1 >),  k j 
≈ (∂S2(E2)/∂E2) < E1 >=< E1 > /T 

H1({p1, q1}) < E1 > 
k ln p({p1, q1}) = − + − S1

T T 

(< E1 > −TS1) H1({p1, q1}) 
p({p1, q1}) = exp[ ] exp[− ]

kT kT ,  k j 
≡ 1/Zhα 
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< E1 > −TS1 = U1 − T1S1 = F1 

H({p, q}) 
p({p, q}) = (Zhα)−1 exp[− ]

kT 

Z is called the partition function. 

H({p, q})
Z(T, V, N) = exp[− ]{dp, dq}/hα 

kT 

(E − TS) F (T, V, N) 
= exp[− ] = exp[− ]

kT kT 
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( ) 

( ) 

In the canonical ensemble, the partition function is 

the source of thermodynamic information. 

F (T,  V,  N) =  −kT lnZN(T, V  )
 

∂F 
S(T,  V,  N) =  − 

∂T V,N 

∂F 
P (T,  V,  N) =  − 

∂V T,N  
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