Wavefunctions, One Particle
\vec{r} and \vec{s} are the variables.
Hamiltonian $\widehat{\mathcal{H}}(\widehat{\vec{r}}, \widehat{\vec{p}}, \widehat{\vec{s}})$
Wavefunction $\psi_{n}(\vec{r}, \vec{s})$
n is a state index and could have several parts.

For an e^{-}in hydrogen $\psi=\psi_{n, l, m_{l}, m_{s}}(\vec{r}, \vec{s})$

$$
\hat{\mathcal{H}}(\widehat{\vec{r}}, \widehat{\vec{p}}, \widehat{\vec{s}}) \psi_{n}(\vec{r}, \vec{s})=E_{n} \psi_{n}(\vec{r}, \vec{s})
$$

$\psi_{n}(\vec{r}, \vec{s})$ often factors into space and spin parts.

$$
\psi_{n}(\vec{r}, \vec{s})=\psi_{n^{\prime}}^{\mathrm{space}}(\vec{r}) \psi_{n^{\prime \prime}}^{\mathrm{spin}}(\vec{s})
$$

$\psi_{n}^{\text {space }}(x) \propto e^{-\alpha x^{2} / 2} H_{n}(\sqrt{\alpha} x)$
H.O. in 1 dimension
$\psi_{n}^{\text {space }}(\vec{r}) \propto e^{i \vec{k} \cdot \vec{r}}$
free particle in 3 dimensions
$\psi_{n^{\prime \prime}}^{\text {spin }}(\vec{s})$
Spin is an angular momentum so for a given value of the magnitude S there are $2 S+1$ values of m_{S}.

For the case of $S=1 / 2$ the eigenfunctions of the z component of \vec{s} are $\phi_{1 / 2}(\vec{s})$ and $\phi_{-1 / 2}(\vec{s})$

$$
\begin{aligned}
\widehat{S}_{z} \phi_{1 / 2}(\vec{s}) & =\frac{\hbar}{2} \phi_{1 / 2}(\vec{s}) \\
\widehat{S}_{z} \phi_{-1 / 2}(\vec{s}) & =-\frac{\hbar}{2} \phi_{-1 / 2}(\vec{s})
\end{aligned}
$$

$\psi_{n^{\prime \prime}}^{\text {spin }}(\vec{s})$ is not necessarily an eigenfunction of \widehat{S}_{z}. For example one might have

$$
\psi_{n^{\prime \prime}}^{\text {spin }}(\vec{s})=\frac{1}{\sqrt{2}} \phi_{1 / 2}(\vec{s})+\frac{1}{\sqrt{2}} \phi_{-1 / 2}(\vec{s})
$$

In some cases $\psi_{n}(\vec{r}, \vec{s})$ may not factor into space and spin parts. For example one may find

$$
\psi_{n}(x, \vec{s})=f(x) \phi_{1 / 2}(\vec{s})+g(x) \phi_{-1 / 2}(\vec{s})
$$

Many Distinguishable Particles, Same Potential,

No Interaction

Lump space and spin variables together
$\vec{r}_{1}, \vec{s}_{1} \rightarrow 1 \quad \vec{r}_{2}, \vec{s}_{2} \rightarrow 2$ etc.

$$
\hat{\mathcal{H}}(1,2, \cdots N)=\hat{\mathcal{H}}_{0}(1)+\hat{\mathcal{H}}_{0}(2)+\cdots \hat{\mathcal{H}}_{0}(N)
$$

In this expression the single particle Hamltonians all have the same functional form but each has arguments for a different particle.

The same set of single particle energy eigenstates is available to every particle, but each may be in a different one of them. The energy eigenfunctions of the system can be represented as products of the single particle energy eigenfunctions.

$$
\psi_{\{n\}}(1,2, \cdots N)=\psi_{n_{1}}(1) \psi_{n_{2}}(2) \cdots \psi_{n_{N}}(N)
$$

$\{n\} \equiv\left\{n_{1}, n_{2}, \cdots n_{N}\right\}$. There are $N \# \mathrm{~s}$, but each n_{i} could have an infinite range.

$$
\hat{\mathcal{H}}(1,2, \cdots N) \psi_{\{n\}}(1,2, \cdots N)=E_{\{n\}} \psi_{\{n\}}(1,2, \cdots N)
$$

Many Distinguishable Particles, Same Potential,
Pairwise Interaction

$$
\widehat{\mathcal{H}}(1,2, \cdots N)=\sum_{i=1}^{N} \widehat{\mathcal{H}}_{0}(i)+\frac{1}{2} \sum_{i \neq j} \hat{\mathcal{H}} \hat{i n t}(i, j)
$$

The $\psi_{\{n\}}(1,2, \cdots N)$ are no longer energy eigenfunctions; however, they could form a very useful basis set for the expansion of the true energy eigenfunctions.

Indistinguishable Particles

$\widehat{P}_{i j} f(\cdots i \cdots j \cdots) \equiv f(\cdots j \cdots i \cdots)$
$\left(\widehat{P}_{i j}\right)^{2}=\widehat{I} \quad \Rightarrow \quad$ eigenvalues of $\widehat{P}_{i j}$ are $+1,-1$

It is possible to construct many-particle wavefunctions which are symmetric or anti-symmetric under this interchange of two particles.

$$
\widehat{P}_{i j} \psi^{(+)}=\psi^{(+)}
$$

$$
\hat{P}_{i j} \psi^{(-)}=-\psi^{(-)}
$$

Identical \Rightarrow no physical operation distinguishes between particle i and particle j. Mathematically, this means that for all physical operators $\widehat{\mathcal{O}}$

$$
\left[\widehat{\mathcal{O}}, \widehat{P}_{i j}\right]=0
$$

\Rightarrow eigenfunctions of $\widehat{\mathcal{O}}$ must also be eigenfunctions of $\hat{P}_{i j}$.
\Rightarrow energy eigenfunctions ψ_{E} must be either $\psi_{E}^{(+)}$or $\psi_{E}^{(-)}$.
\Rightarrow states differing only by the interchange of the spatial and spin coordinates of two particles are the same state.

Relativistic quantum mechanics requires

$$
\begin{aligned}
\text { integer spin } & \leftrightarrow \psi_{E}^{(+)} & & \text {[Bosons] } \\
\text { half-integer spin } & \leftrightarrow \psi_{E}^{(-)} & & {[\text {Fermions] }}
\end{aligned}
$$

Composite Particles

- Composite Fermions and Composite Bosons
- Count the number of sign changes as all the constituents are interchanged
- Well defined statistics (F-D or B-E) as long as the internal degrees of freedom are not excited

The constitutents of nuclei and atoms are $e, p \& n$. Each has $S=1 / 2$.
N even \Rightarrow even \# of exchanges.
$\psi \rightarrow(+) \psi \Rightarrow \mathrm{B}-\mathrm{E}$
also N even \Rightarrow integer spin
N odd \Rightarrow odd \# of exchanges.
$\psi \rightarrow(-) \psi \Rightarrow$ F-D
also N odd \Rightarrow half-integer spin

Particle Nuclear Spin Electrons Statistics
$H\left(H^{1}\right)$
$D\left(H^{2}\right)$
$T\left(H^{3}\right)$
$\frac{1}{2}$
1
$\frac{1}{2}$
$\frac{1}{2}$
0
2
2
3
3
3
1
1
1
B-E
F-D
B-E
He^{3}
He^{4}
Li^{6}
Li^{7}
H_{2}
x_{2}
1
$\frac{3}{2}$
F-D
B-E
8.044 L17B13

Let $\alpha(\vec{r}, \vec{s}), \beta(\vec{r}, \vec{s}), \cdots$ be single particle wavefunctions.

A product many-particle wavefunction, $\alpha(1) \beta(2)$, does not work.

Instead, use a sum of all possible permutations:

$$
\begin{aligned}
& \Psi_{2}^{(+)}=\frac{1}{\sqrt{2}}(\alpha(1) \beta(2)+\alpha(2) \beta(1)) \\
& \Psi_{N}^{(+)}=\frac{1}{\sqrt{N!}} \frac{1}{\sqrt{\prod_{\alpha} n_{\alpha}!}} \sum_{\text {permutations }}(\alpha(1) \beta(2) \gamma(3) \cdots)
\end{aligned}
$$

The antisymmetric version results in a familiar form, a determinant.

$$
\Psi_{2}^{(-)}=\frac{1}{\sqrt{2}}(\alpha(1) \beta(2)-\alpha(2) \beta(1))
$$

\rightarrow states

$$
\Psi_{N}^{(-)}=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\alpha(1) & \beta(1) & \gamma(1) & \cdots \\
\alpha(2) & \beta(2) & \gamma(2) & \cdots \\
\alpha(3) & \beta(3) & \gamma(3) & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right| \quad \downarrow \text { particles }
$$

- $\Psi_{N}^{(-)}=0$ if 2 states are the same since 2 columns are equal: Pauli Principle.
- $\Psi_{N}^{(-)}=0$ if 2 particles have the same \vec{r} and \vec{s} since 2 rows are equal.
- Specification: indicate which s.p. ψ s are used. $\left\{n_{\alpha}, n_{\beta}, n_{\gamma}, \cdots\right\}$ An $\infty \#$ of entries, each ranging from 0 to N but with $\sum_{\alpha} n_{\alpha}=N$.

$$
\begin{array}{ll}
|1,0,1,1,0,0, \cdots\rangle & \text { Fermi-Dirac } \\
|2,0,1,3,6,1, \cdots\rangle & \text { Bose-Einstein }
\end{array}
$$

$\sum_{\alpha}^{\prime} \epsilon_{\alpha} n_{\alpha}=E \quad$ Prime indicates $\sum_{\alpha} n_{\alpha}=N$

Example Atomic configurations

$$
\begin{aligned}
& (1 S)^{2}(2 S)^{2}(2 P)^{6} \leftrightarrow \mathrm{Ne} \\
& (1 S)^{2}(2 S)^{2}(2 P)^{6}(3 S)^{1} \leftrightarrow \mathrm{Na} \\
& (1 S)^{1}(2 S)^{1} \leftrightarrow \mathrm{He}^{*}
\end{aligned}
$$

Statistical Mechanics Try Canonical Ensemble

$$
\begin{aligned}
Z(N, V, T) & =\sum_{\text {states }} e^{-E(\text { state }) / k T} \\
& =\sum_{\left\{n_{\alpha}\right\}}^{\prime} e^{-E\left(\left\{n_{\alpha}\right\}\right) / k T} \\
& =\sum_{\left\{n_{\alpha}\right\}}^{\prime}\left(\prod_{\alpha} e^{-\epsilon_{\alpha} n_{\alpha} / k T}\right)
\end{aligned}
$$

This can not be carried out. One can not interchange the \sum over occupation numbers and the Π over states because the occupation numbers are not independent ($\sum n_{\alpha}=N$).

T=0 LOWEST POSSIBLE TOTAL ENERGY

BOSE: ALL N PARTICLES IN LOWEST ε SINGLE PARTICLE STATE

FERMI: LOWEST N SINGLE PARTICLE STATES EACH USED ONCE $\varepsilon<\varepsilon_{\mathrm{F}}, \quad \varepsilon_{\mathrm{F}}$ CALLED THE FERMI ENERGY

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

