Thermodynamics focuses on state functions: $P, V, M, \mathcal{S}, \ldots$

Nature often gives us response functions (derivatives):

$$
\begin{gathered}
\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad \kappa_{T} \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \quad \kappa_{S} \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{\text {adiabatic }} \\
\chi_{T} \equiv\left(\frac{\partial M}{\partial H}\right)_{T}
\end{gathered}
$$

Example Non-ideal gas

Given

- Gas \rightarrow ideal gas for large $T \& V$
- $\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{N k}{V-N b}$
- $\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{N k T}{(V-N b)^{2}}+\frac{2 a N^{2}}{V^{3}}$

Find P

$$
\begin{aligned}
d P & =\left(\frac{\partial P}{\partial V}\right)_{T} d V+\left(\frac{\partial P}{\partial T}\right)_{V} d T \\
P & =\int\left(\frac{\partial P}{\partial T}\right)_{V} d T+f(V)=\int\left(\frac{N k}{V-N b}\right) d T+f(V) \\
& =\frac{N k T}{(V-N b)}+f(V)
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\partial P}{\partial V}\right)_{T} & =-\frac{N k T}{(V-N b)^{2}}+\underbrace{f^{\prime}(V)}=-\frac{N k T}{(V-N b)^{2}}+\underbrace{\frac{2 a N^{2}}{V^{3}}} \\
f(V) & =\int \frac{2 a N^{2}}{V^{3}} d V=-\frac{a N^{2}}{V^{2}}+c \\
P & =\frac{N k T}{(V-N b)}-\frac{a N^{2}}{V^{2}}+c
\end{aligned}
$$

but $c=0$ since $P \rightarrow N k T / V$ as $V \rightarrow \infty$

Internal Energy U

Observational fact

Final state is independent of how ΔW is applied.
Final state is independent of which adiabatic path is followed.
\Rightarrow a state function U such that

$$
\Delta U=\Delta W_{\text {adiabatic }}
$$

$U=U$ (independent variables)
$=U(T, V)$ or $U(T, P)$ or $U(P, V)$ for a simple fluid

Heat

If the path is not adiabatic, $d U \neq \not \subset W$

$$
\not d Q \equiv d U-\not d W
$$

$d Q$ is the heat added to the system.

It has all the properties expected of heat.

First Law of Thermodynamics

$$
d U=\phi Q+\phi d W
$$

- U is a state function
- Heat is a flow of energy
- Energy is conserved

Ordering of temperatures

When $d W=0$, heat flows from high T to low T.

Example Hydrostatic System: gas, liquid or simple solid

Variables (with N fixed): P, V, T, U.
Only 2 are independent.

$$
C_{V} \equiv\left(\frac{d Q}{d T}\right)_{V} \quad C_{P} \equiv\left(\frac{d Q}{d T}\right)_{P}
$$

Examine these heat capacities.

$$
d U=\not d Q+\not d W=\not Q Q-P d V
$$

$$
\not d Q=d U+P d V
$$

We want $\frac{d}{d T}$. We have $d V$.

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

$$
\begin{aligned}
& d Q=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) d V \\
& \Rightarrow \frac{\phi Q}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) \frac{d V}{d T} \\
& C_{V} \equiv\left(\frac{d Q}{d T}\right)_{V}=\underline{\left(\frac{\partial U}{\partial T}\right)_{V}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{P} \equiv\left(\frac{d Q}{d T}\right)_{P}=\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}}+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) \underbrace{\left(\frac{\partial V}{\partial T}\right)_{P}}_{\alpha V} \\
& C_{P}-C_{V}=\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) \alpha V
\end{aligned}
$$

The $2^{\text {nd }}$ law will allow us to simplify this further.

Note that $C_{P} \neq\left(\frac{\partial U}{\partial T}\right)_{P}$.

Paths Experimental conditions, not just math

$\Delta \mathrm{V}=0$

insulation
$\Delta \mathrm{T}=0$

$\Delta \mathrm{Q}=0$

$\Delta \mathrm{Q}=0$ could come from time considerations

Example Sound Wave

too fast for heat to flow out of compressed regions

$$
v=\sqrt{\frac{1}{\rho \kappa_{S}}}
$$

Example Hydrostatic system: an ideal gas, $\mathrm{PV}=\mathrm{Nk} \mathrm{T}$

New information $\left.\quad \frac{\partial U}{\partial V}\right|_{T}=0$,
3 possible sources

- Experiment

No work done so $\Delta W=0$
$T_{f}=T_{i} \Rightarrow \Delta Q=0$
together $\Rightarrow \underbrace{\Delta U=0}_{\text {here }} \rightarrow \underbrace{(\partial U / \partial V)_{T}=0}_{\text {quasi-static changes }}$

- Physics: no interactions, single particle energies only $\Rightarrow(\partial U / \partial V)_{T}=0$
- Thermo: $2^{\text {nd }}$ law $+(P V=N k T) \Rightarrow(\partial U / \partial V)_{T}=0$

Consequences

$$
\begin{aligned}
d U & =\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}} d T+\underbrace{\left(\frac{\partial U}{\partial V}\right)_{T}}_{0} d V \\
U & =\int_{0}^{T} C_{V}\left(T^{\prime}\right) d T^{\prime}+\underbrace{\text { constant }}_{\text {set }=0}
\end{aligned}
$$

In a monatomic gas one observes $C_{V}=\frac{3}{2} N k$.
Then the above result gives $U=C_{V} T=\frac{3}{2} N k T$.

$$
\begin{aligned}
C_{P}-C_{V} & =(\underbrace{\left(\frac{\partial U}{\partial V}\right)_{T}}_{0}+P) \underbrace{\left(\frac{\partial V}{\partial T}\right)_{P}}_{\frac{\partial}{\partial T}(N k T / P)_{P}=N k / P} \\
& =N k \quad \text { for any ideal gas }
\end{aligned}
$$

Applying this to the monatomic gas one finds

$$
\begin{aligned}
C_{P} & =\frac{3}{2} N k+N k=\frac{5}{2} N k \\
\gamma & \equiv C_{P} / C_{V}=\frac{5}{3}
\end{aligned}
$$

Adiabatic Changes $d Q=0$

Find the equation for the path.
Consider a hydrostatic example.

$$
\begin{gathered}
d Q=\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}} d T+\underbrace{\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right)}_{\left(C_{P}-C_{V}\right) / \alpha V} d V=0 \\
\left(\frac{\partial T}{\partial V}\right)_{\Delta Q=0}=-\left(\frac{\left.C_{P}-C_{V}\right)}{C_{V}}\right) \frac{1}{\alpha V}=-\frac{(\gamma-1)}{\alpha V}
\end{gathered}
$$

This constraint defines the path.

Apply this relation to an ideal gas.
$\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{1}{V} \frac{\partial}{\partial T}\left(\frac{N k T}{P}\right)_{P}=\frac{1}{V}\left(\frac{N k}{P}\right)=\frac{1}{V} \frac{V}{T}=\frac{1}{T}$
Path

$$
\begin{aligned}
\frac{d T}{d V} & =-(\gamma-1) \frac{T}{V} \\
\frac{d T}{T} & =-(\gamma-1) \frac{d V}{V} \rightarrow \ln \left(\frac{T}{T_{0}}\right)=-(\gamma-1) \ln \frac{V}{V_{0}} \\
\left(\frac{T}{T_{0}}\right) & =\left(\frac{V}{V_{0}}\right)^{-(\gamma-1)}
\end{aligned}
$$

Adiabatic

$$
\begin{aligned}
& T V^{\gamma-1}=c \\
& P V^{\gamma}=c^{\prime} \\
& \gamma=5 / 3 \\
& \text { (monatomic) }
\end{aligned}
$$

$$
P \propto V^{-5 / 3}
$$

$$
\frac{d P}{d V}=-\frac{5}{3} \frac{P}{V}
$$

Expansion of an ideal gas

rupture diaphragm adiabatic $\Delta \mathrm{Q}=0$ not quasistatic
$\Delta W=0$
$\rightarrow \Delta U=0$
$\mathrm{T} \left\lvert\, \begin{aligned} & \text { V } \\ & \text { constant }\end{aligned}\right.$

slowly move piston adiabatic $\Delta \mathrm{Q}=0$ quasistatic
ΔW is negative
$\rightarrow \Delta \mathrm{U}=$ is negative

Starting with a few known facts,
$1^{\text {st }}$ law, $d W$, and state function math,
one can find
relations between some thermodynamic quantities,
a general expression for $d U$,
and the adiabatic constraint.

Adding models for the equation of state and the heat
capacity allows one to find
the internal energy U
and the adiabatic path.

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

