
Thermodynamics focuses on state functions: P, V, M, S, . . .
 

Nature often gives us response functions (derivatives):
 

1 
� 
∂V 

� 
1 
� 
∂V 

� 
1 
� 
∂V 

� 

α ≡ 
V ∂T P 

κT ≡ − 
V ∂P T 

κS ≡ − 
V ∂P adiabatic 

� � 
∂M
 

χT ≡
 
∂H T
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Example Non-ideal gas 

Given 

• Gas → ideal gas for large T & V
 

  
∂P Nk 

• = 
∂T V V − Nb 

  
∂P NkT 2aN2 

• = − + 
∂V T (V − Nb)2 V 3
 

Find P 
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dP = 
� � 
∂P 

∂V T 
dV + 

� � 
∂P 

∂T V 
dT 

P = 
� � � 

∂P 

∂T V 
dT + f(V ) = 

� � � 
Nk 

V − Nb 
dT + f(V ) 

= 
NkT 

(V − Nb) 
+ f(V ) 
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∂P NkT NkT 2aN2
 

= − + f I(V = − + 
∂V (V − Nb)2 j  V )) (V − Nb)2 V 3


T j ) V
 

2aN2 aN2 
f(V ) = dV = − + c
 

V 3 V 2
 

NkT aN2 
P = − + c
 

(V − Nb) V 2
 

but c = 0 since P → NkT/V as V → ∞ 
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Internal Energy U
 

Observational fact
 

final

∆W

initial

  isolated

(adiabatic)

Final state is independent of how ΔW is applied. 

Final state is independent of which adiabatic path 

is followed. 
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⇒ a state function U such that 

ΔU = ΔWadiabatic 

U = U(independent variables) 

= U(T, V ) or U(T, P ) or U(P, V ) for a simple fluid 
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Heat 

If the path is not adiabatic, dU  /W= d

d/Q ≡ dU − d/W 

d/Q is the heat added to the system. 

It has all the properties expected of heat. 
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First Law of Thermodynamics
 

dU = d/Q + d/W 

• U is a state function 

• Heat is a flow of energy 

• Energy is conserved 
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Ordering of temperatures
 

T1 T2

dQ

When d/W = 0, heat flows from high T to low T.
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Example Hydrostatic System: gas, liquid or simple 

solid 

Variables (with N fixed): P, V, T, U . 

Only 2 are independent. 

⎛ ⎞ ⎛ ⎞ 
d/Q d/Q⎝ ⎠ ⎝ ⎠CV ≡ CP ≡ 
dT dTV P 

Examine these heat capacities. 
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� � � � 

dU = d/Q + d/W = d/Q − P dV 

d/Q = dU + P dV 

d 
We want . We have dV .
 

dT 

∂U ∂U 
dU = dT + dV 

∂T V ∂V T 
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� � �� � � 
∂U ∂U 

d/Q = dT + + P dV 
∂T V ∂V T 

� � �� � � 
d/Q ∂U ∂U dV 

⇒ = + + P 
dT ∂T V ∂V T dT 

⎛ ⎞ 
d/Q ∂U 

CV ≡ ⎝ ⎠ = 
dT ∂T VV 
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�� � � 

� � 

⎛ ⎞ � � �� � � � � 
d/Q ∂U ∂U ∂V 

CP ≡ ⎝ ⎠ = + + P 
dT ∂T V ∂V T ∂T PP " T v " T v 

CV αV 

∂U 
CP − CV = + P αV 

∂V T 

The 2nd law will allow us to simplify this further.
 

∂U 
Note that CP  .
= 

∂T P 
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~~~~~~~

Paths Experimental conditions, not just math

floating 

piston

fills 

container

bath insulation

∆V=0 ∆P=0 ∆T=0 ∆Q=0
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∆Q = 0 could come from time considerations
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Example Sound Wave

too fast for heat to flow out of compressed regions

ρ(x)

x

v

v =   1 
ρκS
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     free 

 expansion
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Example Hydrostatic system: an ideal gas, PV=NkT

New information                    , 

 

3 possible sources 

 

 Experiment

bath initially at Ti observe Tf = Ti

∂U

∂V

)

T
= 0

8.044 L6B16
 



No work done so ΔW = 0 

Tf = Ti ⇒ ΔQ = 0 

together ⇒ ΔU = 0 → (∂U/∂V )T = 0 ,	 U= Q , U= Q 
here quasi-static changes 

•	 Physics: no interactions, single particle energies 

only ⇒ (∂U/∂V )T = 0 

•	 Thermo: 2nd law + (PV = NkT ) ⇒ (∂U/∂V )T = 0
 

8.044 L6B17
 



� � � � 
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Consequences 

∂U ∂U
 
dU = dT + dV 

∂T V ∂V T, vt v , vt v 
CV 0 

T 
U = CV (T ') dT ' + constant


0 , vt v 
set=0 

In a monatomic gas one observes CV = 2
3Nk. 

Then the above result gives U = CV T = 2
3NkT . 
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� � � � 
∂U ∂V 

CP − CV = ( +P )
∂V ∂T ,   Tp ,   Pp 
0 ∂ 

∂T (NkT/P )P =Nk/P 

= Nk for any ideal gas 

Applying this to the monatomic gas one finds 
3 5 

CP = Nk + Nk = Nk 
2 2 

5 
γ ≡ CP /CV = 

3 
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Adiabatic Changes d/Q = 0 

Find the equation for the path. 

Consider a hydrostatic example. 

� � �� � � 
∂U ∂U 

d/Q = dT + + P dV = 0 
∂T V ∂V T� �� � � �� � 
CV (CP −CV )/αV 

⎛ ⎞ 
∂T CP − CV ) 1 (γ − 1)⎝ ⎠= − = −
∂V ΔQ=0 CV αV αV 

This constraint defines the path. 
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Apply this relation to an ideal gas.
 

1 
� 
∂V 

� 
1 ∂ 

� 
NkT 

� 
1 
� 
Nk 

� 
1 V 1 

α ≡ = = = = 
V ∂T P V ∂T P P V P V T T 

Path 

dT T 
= −(γ − 1)


dV V
 

⎛ ⎞ 
dT dV T V
 ⎝ ⎠= −(γ − 1) → ln = −(γ − 1) ln
 
T V T0 V0
 

⎛ ⎞ ⎛ ⎞−(γ−1)

T V
 ⎝ ⎠ ⎝ ⎠=
 
T0 V0
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Adiabatic
 

TV γ− 1 = c 

"PV γ = c

γ = 5/3 

(monatomic) 

V − 5/3P ∝
 
dP 5 P 

= − 
dV 3V 

Isothermal

PV = c′′

P ∝ V 1

dP

dV
=

P

V

Adiabatic

TV 1 = c

PV = c′

= 5/3 (monatomic)

P ∝ V 5/3

dP

dV
=

5

3

P

V

P

V

adiabat

isotherm
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γ

γ

γ

Isothermal
 

""
PV = c

V − 1P ∝
 
dP P 

= − 
dV V 
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F

insulation

8.044L12B10

rupture diaphragm 

adiabatic ∆Q = 0 

not quasistatic 

∆W = 0 

 ∆U = 0 

slowly move piston 

adiabatic ∆Q = 0 

quasistatic 

∆W is negative 

 ∆U = is negative 

T

V

constant U

T

V

adiabat

Expansion of an ideal gas
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Starting with a few known facts, 

1st law, d/W , and state function math, 

one can find 

relations between some thermodynamic quantities, 

a general expression for dU , 

and the adiabatic constraint. 

Adding models for the equation of state and the heat
 

capacity allows one to find 

the internal energy U 

and the adiabatic path. 

8.044 L6B24
 



MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



