Liouville's Theorem

$\rho(\{p, q\})$ behaves like an incompressible fluid.

$$
\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\sum_{i=1}^{3 N}\left(\frac{\partial \rho}{\partial p_{i}} \frac{d p_{i}}{d t}+\frac{\partial \rho}{\partial q_{i}} \frac{d q_{i}}{d t}\right)=0
$$

Using Hamilton's equations this becomes

$$
\frac{\partial \rho}{\partial t}=\sum_{i=1}^{3 N}\left(\frac{\partial \rho}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q_{i}}-\frac{\partial \rho}{\partial q_{i}} \frac{\partial \mathcal{H}}{\partial p_{i}}\right)
$$

If the density in phase space depends only on the energy at that point,

$$
\rho(\{p, q\})=\rho(\mathcal{H}\{p, q\})
$$

carrying out the indicated derivatives shows that

$$
\frac{\partial \rho}{\partial t}=0 .
$$

This proves that $\rho=\rho(\mathcal{H}\{p, q\})$ is a sufficient condition for an equilibrium probability density in phase space.

1. The System

2. Probability Density

All accessible microscopic states are equally probable.

Classical

$$
\begin{array}{rlrl}
p(\{p, q\}) & =1 / \Omega & & E<\mathcal{H}(\{p, q\}) \leq E+\Delta \\
& =0 & & \text { elsewhere } \\
\Omega \equiv & \int_{\text {accessible }}\{d p, d q\}=\Omega(E, V, N)
\end{array}
$$

Quantum

$$
\begin{aligned}
p(k) & =1 / \Omega & & E<\langle k| \mathcal{H}|k\rangle \leq E+\Delta \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

$$
\Omega \equiv \sum_{k, \text { accessible }}(1)=\Omega(E, V, N)
$$

Let X be a state of the system specified by a subset $\left\{p^{\prime \prime}, q^{\prime \prime}\right\}$ of $\{p, q\}$

$$
p(X)=\int_{\text {except }\left\{p^{\prime \prime}, q^{\prime \prime}\right\}} p(\{p, q\})\{d p, d q\}
$$

$$
=\frac{1}{\Omega} \int_{\text {except }\left\{p^{\prime \prime}, q^{\prime \prime}\right\}}\{d p, d q\}
$$

$=\frac{\Omega^{\prime}(\text { consistent with } X)}{\Omega}$
$=\frac{\text { volume consistent with } X}{\text { total volume of accessible phase space }}$

3. Quantities Related to Ω

$$
\begin{aligned}
\Phi(E, V, N) & \equiv \int_{\mathcal{H}(\{p, q\})<E}\{d p, d q\} \\
& =\text { cumulative volume in phase space }
\end{aligned}
$$

$$
\omega(E, V, N) \equiv \frac{\partial \Phi(E, V, N)}{\partial E}
$$

$=$ density of states as a function of energy
$\Rightarrow \Omega(E, V, N)=\omega(E, V, N) \Delta$

Example Ideal Monatomic Gas

$$
\begin{array}{lr}
q_{i}=x, y, z & \text { in a box } \quad V=L_{x} L_{y} L_{z} \\
p_{i}=m \dot{x}, m \dot{y}, m \dot{z} & -\infty<p_{i}<\infty \\
N \text { atoms } & \mathcal{H}(\{p, q\})=\sum_{i=1}^{3 N} \frac{p_{i}^{2}}{2 m}
\end{array}
$$

$$
\begin{aligned}
\Omega= & \int\{d p, d q\}=\int\{d q\} \int\{d p\} \\
= & {\left[\int_{0}^{L_{x}} d x\right]^{N}\left[\int_{0}^{L_{y}} d y\right]^{N}\left[\int_{0}^{L_{z}} d z\right]^{N} \int\{d p\} } \\
= & V^{N} \int_{E<\mathcal{H}<E+\Delta}\{d p\} \\
& \Phi(E, V, N)=V^{N} \int_{\mathcal{H}<E}\{d p\}
\end{aligned}
$$

$$
E=\sum_{i=1}^{3 N} \frac{p_{i}^{2}}{2 m} \Rightarrow 2 m E=\sum_{i=1}^{3 N} p_{i}^{2}
$$

This describes a $3 N$ dimensional spherical surface in the p part of phase space with a radius $R=$ $\sqrt{2 m E}$.

Math:

- Volume of an α dimensional sphere of radius R is

$$
\frac{\pi^{\alpha / 2}}{(\alpha / 2)!} R^{\alpha}
$$

- Sterling's approximation for large M

$$
\begin{aligned}
& \ln (M!) \approx M \ln M-M \\
& \quad \rightarrow M!\approx\left(\frac{M}{e}\right)^{M}
\end{aligned}
$$

$$
\begin{aligned}
\Phi(E, N, V) & =V^{N} \frac{\pi^{3 N / 2}}{(3 N / 2)!}(2 m E)^{3 N / 2} \\
& \approx\left\{V^{N}\left(\frac{4 \pi e m E}{3 N}\right)^{3 N / 2}\right\} \\
\omega(E, N, V) & =\left(\frac{3 N}{2} \frac{1}{E}\right)\{ \} \\
\Omega(E, N, V) & =\left(\frac{3 N}{2} \frac{\Delta}{E}\right)\{ \}
\end{aligned}
$$

$$
\begin{aligned}
& p\left(x_{i}\right)=\frac{\Omega^{\prime}}{\Omega}=\frac{V^{N-1} L_{y} L_{z}}{V^{N}}=\frac{1}{L_{x}} \quad 0 \leq x<L_{x} \\
& p\left(x_{i}, y_{j}\right)=\frac{\Omega^{\prime}}{\Omega}=\frac{V^{N-2} L_{y} L_{z} L_{x} L_{z}}{V^{N}}=\frac{1}{L_{x} L_{y}}=p\left(x_{i}\right) p\left(y_{j}\right) \Rightarrow \text { S.I. } \\
& p\left(p_{x_{i}}\right)=\int \underbrace{p(\{p, q\})}_{1 / \Omega} \underbrace{d p}_{p \neq p_{x_{i}}}, d q\}=\frac{\Omega^{\prime}}{\Omega}
\end{aligned}
$$

Note that Ω^{\prime} differs on each of the three lines, being a generic symbol for the reduced phase volume consistent with some constraint.
$\epsilon \equiv p_{x}^{2} / 2 m \quad E-\epsilon$ distributed over other variables

$$
\begin{aligned}
\Omega^{\prime}= & \left(\frac{3 N-1}{2} \frac{\Delta}{E-\epsilon}\right) V^{N}\left(\frac{4 \pi e m(E-\epsilon)}{3 N-1}\right)^{(3 N-1) / 2} \\
\frac{\Omega^{\prime}}{\Omega}= & \underbrace{\left(\frac{3 N-1}{3 N}\right)}_{\approx 1} \underbrace{\left(\frac{E}{E-\epsilon}\right)}_{\approx 1}\left(\frac{4 \pi e m}{3}\right)^{-1 / 2} \\
& \times \underbrace{\left(\frac{\left(N-\frac{1}{3}\right)^{-\frac{3 N}{2}+\frac{1}{2}}}{N^{-\frac{3 N}{2}}}\right)}_{A} \underbrace{\left(\frac{(E-\epsilon)^{\frac{3 N}{2}-\frac{1}{2}}}{E^{\frac{3 N}{2}}}\right)}_{B}
\end{aligned}
$$

$$
A=\sqrt{N-\frac{1}{3}}\left(1-\frac{1}{3 N}\right)^{-\frac{3 N}{2}}=\sqrt{N-\frac{1}{3}}\left(1+\frac{1 / 2}{-3 N / 2}\right)^{-\frac{3 N}{2}}
$$

but $\quad \lim _{\zeta \rightarrow \infty}\left(1+\frac{x}{\zeta}\right)^{\zeta}=e^{x}$
so $A \approx \sqrt{N} e^{1 / 2}$

$$
B=\frac{1}{\sqrt{E-\epsilon}}\left(1-\frac{\epsilon}{E}\right)^{\frac{3 N}{2}}=\frac{1}{\sqrt{E-\epsilon}}\left(1-\frac{\left.\frac{1}{\epsilon} \epsilon /<\epsilon\right\rangle}{3 N / 2}\right)^{\frac{3 N}{2}}
$$

where we have used $<\epsilon>\equiv E / 3 N$ and $E=3 N<$ $\epsilon>$.
so $B \approx \frac{1}{\sqrt{3 N<\epsilon>}} e^{-\epsilon / 2\langle\epsilon>}$

$$
\begin{aligned}
p\left(p_{x}\right) & =\left(\frac{\sqrt{3}}{\sqrt{4 \pi m}} e^{-1 / 2}\right)\left(\sqrt{N} e^{1 / 2}\right) \frac{1}{\sqrt{3 N<\epsilon>}} e^{-\epsilon / 2<\epsilon>} \\
& =\frac{1}{\sqrt{4 \pi m<\epsilon>}} e^{-\epsilon / 2<\epsilon>}
\end{aligned}
$$

Now use $\epsilon=p_{x}^{2} / 2 m$ and $<\epsilon>=<p_{x}^{2}>/ 2 m$.

$$
p\left(p_{x}\right)=\frac{1}{\sqrt{2 \pi<p_{x}^{2}>}} e^{-p_{x}^{2} / 2<p_{x}^{2}>}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

