$\Omega=\Omega(E, V, N \ldots) \equiv$ Volume of the accessible region of phase space.
4. Entropy

$$
\left.\begin{array}{rl}
S(E, V, N) & \equiv k \ln \Omega(E, V, N) \\
& \approx k \ln \Phi(E, V, N) \\
& \approx k \ln \omega(E, V, N)
\end{array}\right\} \text { Differ only by } \ln N
$$

- It is a state function.
- It is extensive.
- It is a logarithmic measure of the microscopic degeneracy associated with a macroscopic (that is, thermodynamic) state of the system.
- k is Boltzmann's constant, units of energy per ${ }^{0} K$.

5. Statistical Mechanical Definition of Temperature

Find the most probable E_{1}
$\equiv E_{1}^{*}$

- Total is microcanonical
- $d W_{1 \rightarrow 2}=0$
- interaction between 1 \& 2 is so small that Ω can be separated

$$
\begin{aligned}
p\left(E_{1}\right) & =\frac{\Omega^{\prime}}{\Omega}=\frac{\Omega_{1}\left(E_{1}\right) \Omega_{2}\left(E-E_{1}\right)}{\Omega(E)} \\
\ln p\left(E_{1}\right) & =\ln \Omega_{1}\left(E_{1}\right)+\ln \Omega_{2}\left(E-E_{1}\right)-\ln \Omega(E) \\
& =\frac{1}{k}\left(S_{1}\left(E_{1}\right)+S_{2}\left(E-E_{1}\right)-S(E)\right) \\
\frac{\partial}{\partial E_{1}} \ln p\left(E_{1}\right) & =\frac{1}{k}\left(\left(\frac{\partial S_{1}}{\partial E_{1}}\right)_{d W_{1}=0}-\left(\frac{\partial S_{2}}{\partial E_{2}}\right)_{d W_{2}=0}\right)=0
\end{aligned}
$$

The condition for determining E_{1}^{*} is

$$
\underbrace{\left(\frac{\partial S_{1}}{\partial E_{1}}\right)_{d W_{1}=0}}_{f \text { of }(1)}=\underbrace{\left(\frac{\partial S_{2}}{\partial E_{2}}\right)_{d W_{2}=0}}_{f \text { of }(2)}
$$

But this also specifies the equilibrium condition.
Thus

$$
\left.\left(\frac{\partial S}{\partial E}\right)_{d W=0}=f(T) \equiv \frac{1}{T} \quad \text { (in equilibrium }\right)
$$

6. Two Fundamental Inequalities

What if $E_{1} \neq E_{1}^{*}$?
(1) \rightarrow (1)* as equilibrium is established.

$$
\begin{aligned}
p\left(E_{1}\right) & \leq p\left(E_{1}^{*}\right) \\
\Omega_{1}\left(E_{1}\right) \Omega_{2}\left(E-E_{1}\right) & \leq \Omega_{1}\left(E_{1}^{*}\right) \Omega_{2}\left(E-E_{1}^{*}\right) \\
1 & \leq \frac{\Omega_{1}\left(E_{1}^{*}\right)}{\Omega_{1}\left(E_{1}\right)} \frac{\Omega_{2}\left(E-E_{1}^{*}\right)}{\Omega_{2}\left(E-E_{1}\right)}
\end{aligned}
$$

$$
\begin{gathered}
0 \leq \underbrace{S_{1}\left(E_{1}^{*}\right)-S_{1}\left(E_{1}\right)}_{\Delta S_{1}}+\underbrace{S_{2}\left(E-E_{1}^{*}\right)-S_{2}\left(E-E_{1}\right)}_{\Delta S_{2}} \\
\Rightarrow \quad \Delta S=\Delta S_{1}+\Delta S_{2} \text { increases } \\
\Delta S \geq 0
\end{gathered}
$$

The total entropy of an isolated system always increases or, at equilibrium, remains constant.

Now assume (2) $\gg(1)^{*} \Rightarrow T_{2} \equiv T_{\text {bath }}$ does not change.

$$
\begin{gathered}
d S_{2}=\frac{d E_{2}}{T_{2}}=\frac{d Q_{2}}{T_{2}}=-\frac{d Q_{1}}{T_{\text {bath }}} \\
d S=d S_{1}+d S_{2}=d S_{1}-\frac{d Q_{1}}{T_{\text {bath }}} \geq 0 \\
\Rightarrow \bullet \quad d S_{1} \geq \frac{d Q_{1}}{T_{\text {bath }}}
\end{gathered}
$$

In particular, for systems in equilibrium with a bath $d S=\not d Q / T$.

Example Ideal Monatomic Gas

$$
\begin{aligned}
\Phi & \approx V^{N}\left(\frac{4 \pi e m E}{3 N}\right)^{3 N / 2}=\left\{V\left(\frac{4 \pi e m E}{3 N}\right)^{3 / 2}\right\}^{N} \\
& \rightarrow S(E, N, V)=k N \ln \left\{V\left(\frac{4 \pi e m E}{3 N}\right)^{3 / 2}\right\} \\
\Omega & \approx\left(\frac{3 N}{2} \frac{\Delta}{E}\right) V^{N}\left(\frac{4 \pi e m E}{3 N}\right)^{3 N / 2} \\
& \rightarrow S(E, N, V)=k N \ln \left\{V\left(\frac{4 \pi e m E}{3 N}\right)^{3 / 2}\right\}-\ln \left(\frac{2}{3} \frac{1}{\Delta} \frac{E}{N}\right)
\end{aligned}
$$

The Energy Relation

$$
\begin{aligned}
\frac{1}{T} & \equiv\left(\frac{\partial S}{\partial E}\right)_{N, V}=\frac{N k}{\{ \}} \frac{3}{2} \frac{1}{E}\{ \}=\frac{(3 / 2) N k}{E} \\
& \Rightarrow E=(3 / 2) N k T
\end{aligned}
$$

Here $U=E$ so $C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=(3 / 2) N k$.

The Adiabatic Condition

$\Delta Q=0 \Rightarrow \Delta S=0$ for a quasistatic process.

$$
S(E, N, V)=k N \ln \left\{V\left(\frac{4 \pi e m E}{3 N}\right)^{3 / 2}\right\}
$$

Use the energy relation to eliminate E.

$$
\begin{gathered}
S(E, N, V)=k N \ln \left\{V\left(\frac{4 \pi e m((3 / 2) X k T}{3 X}\right)^{3 / 2}\right\} \\
\left.\Delta S\right|_{\Delta N=0} \Rightarrow V T^{3 / 2}=\mathrm{constant}
\end{gathered}
$$

Microcanonical: E fixed + equal a priori probabilities
\Rightarrow microscopic probability densities [S.M.]

Together with the definition of entropy
\Rightarrow temperature scale and $2^{N D}$ law inequalities [Thermodynamics]

$$
\left.\begin{array}{l}
\Delta S \geq 0 \\
d S_{1} \geq \frac{d Q_{1}}{T}
\end{array}\right\} 2^{N D} \text { Law }
$$

Quasi-static means arbitrarily close to equilibrium.

- Necessary for work differentials to apply
- Required for $=$ in above $2^{N D}$ law relations

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

