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3 Functions of a Random Variable

Consider a gas in thermal equilibrium and imagine that the probability den-
sity for the speed of an atom pv(ζ) is known. The variable of interest, for
a particular application, is an atom’s kinetic energy, T ≡ 1mv2. It would

2

be a simple matter to compute the mean value of T , a single number, by
using pv(ζ) to find < v2 >. But perhaps more information about the random
variable T is needed. To completely specify T as a random variable, one
needs to know its own probability density pT (η). Finding pT (η) given pv(ζ)
is a branch of probability known as functions of a random variable.

Let f(x) be some known, deterministic function of the random variable
x (as T (v) is a function of v above). There are several ways of obtaining the
probability density for f , pf (η), from the probability density for x, px(ζ).
They are covered in textbooks on random variables. Only one of these meth-
ods will be introduced here, one which always works and one which proves to
be the most useful in situations encountered in physics. The method consists
of a three step process:

A. Sketch f(x) verses x and determine that region of x in which f(x) < η.

B. Integrate px over the indicated region in order to find the cumulative
distribution function for f , that is Pf (η).

C. Differentiate Pf (η) to obtain the density function pf (η).

At first sight it may appear that the integration in step B could lead to
computational difficulties. This turns out not to be the case since in most
instances one can avoid actually computing the integral by using the following
mathematical result.

Mathematics: Derivative of an Integral Expression

If

G(y) ≡
∫ b(y)

g(y, x) dx,
a(y)

then

dG(y) db(y) da(y) b(y) ∂g(y, x)
= g(y, x = b(y)) (y)) + dx.

dy
− g(y, x = a

dy dy

∫
a(y) ∂y



36 Probability

This result follows from examining how the value of the integral changes as
the upper limit b(y), the lower limit a(y), and the kernel g(y, x) are separately
varied as indicated in the following figure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Classical Intensity of Polarized Thermal Light

Given The classical instantaneous intensity of a linearly polarized elec-
tromagnetic wave is proportional to the square of the electric field amplitude
E .

I = aE2

The fact that the power or intensity in some process is proportional to the
square of an amplitude is a common occurrence in nature. For example, it is
also found in electrical and acoustic systems. When the radiation field is in
thermal equilibrium with matter at a given temperature it is called thermal
radiation and the electric field amplitude has a Gaussian density.

1
p(E) = √ e−E2/2σ2

2πσ2

Problem Find the probability density for the instantaneous intensity p(I).

Solution Note that finding the mean intensity is straight forward.

< I >= a < E2 >= aσ2
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To find p(I) use the procedure outlined above.

[Step A]

I

The shaded region of the E axis shows those values of E which result in
intensities less than η.

[Step B] √
η/

PI(η) =
∫ a

−
√ p (ζ) dζ

η/a
E

It is not necessary to evaluate this integral! Setting it up with the proper (η
dependent) limits of integration is sufficient.

[Step C]

d
pI(η) = PI(η)

dη

d
√

=
dη

∫ η/a

−
√ p (ζ) dζ

η/a
E

1 1
=

2
√ p (

ηa
E

√ 1 1
η/a) +

2
√ p ( )E −

√
η/a

ηa
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1 1
=

2
√ [p (

ηa
E

√
η/a) + p (E −

√
η/a)]

This general result applies to any probability density for the electric field,
p(E). For the specific case under consideration, where p(E) is Gaussian, one
can proceed to an analytic result.

1
p(I) = √ p (

√
I/a) since p (ζ) is even

aI
E E

1 I
= √ exp[

2πaσ2I
− ] I > 0

2aσ2

= 0 I < 0

0 1 2 3 4

1

2

3

4

5

I

I

The integrable singularity at I = 0 is a consequence of two features of the
problem. The parabolic nature of I(E) emphasizes the low E part of p(E).
Imagine a series of equally spaced values of E . The corresponding values of
I would be densest at small I.
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I

This type of mapping will be treated quantitatively later in the course when
the concept of “density of states” is introduced. The Gaussian nature of p(E)
gives a finite weight to the values of E close to zero. The result of the two
effects is a divergence in p(I) at I = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Harmonic Motion

Given

1
p(θ) = 0

2π
≤ θ < 2π

= 0 elsewhere

x(θ) = x0 sin(θ)

One physical possibility is that x represents the displacement of a harmonic
oscillator of fixed total energy but unknown phase or starting time:

x = x0 sin(ωt + φ).︸ ︷︷
θ

Another possibility is a binary star system observ

︸
ed from a distant location

in the plane of motion. Then x could represent the apparent separation at
an arbitrary time.
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Problem Find p(x).

Solution Consider separately the two regions x > 0 and x < 0.
For x > 0

[Step A]

[Step B]

Px(η) =
∫

pθ(ζ) dζ = 1
shaded

−
∫

pθ(ζ) dζ
unshaded∫ π−arcsin(η/x

= 1 −
0) 1

( ) dζ
arcsin(η/x0) 2π

1 1
= + arcsin(η/x0)

2 π
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[Step C]

d
px(η) = Px(η)

dη

1 1 1
=

π
√

1 − x(η/x )2 00

1 1
=

π
√ 0 x

x2 − η2
≤ η < 0

0

For x < 0

[Step A]

[Step B]

η/

Px(η
∫ 3π−arcsin( x0) 1

) = ( ) dζ
arcsin(η/x0) 2π

3 1
=

2
− arcsin(η/x0)

π

[Step C]

d
px(η) = Px(η)

dη
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1
=

−1 1−
π

√
1 − (η/x0)2 x0

1 1
=

π
√

x2
0 − η2

− x0 < η ≤ 0

Note: the extra -1 in the second line comes about since the derivative of
arcsin(ζ) is negative in the region π/2 < arcsin(ζ) < 3π/2. One could also
have obtained the result for x < 0 from that for x > 0 by symmetry.

The divergence of p(x) at the “turning points” x = ±x0 can be demonstrated
visually by a simple experiment with a pencil as explained in a homework
problem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The method of functions of a random variable can can also be applied

in cases where the function in question depends on two or more random
variables with known probabilities, that is one might want to find p(f) for a
given f(x, y) and p(x, y).

Example: Product of Two Random Variables

Given x and y are defined over all space and px,y(ζ, η) is known.

Problem Find p(z) where z ≡ xy.
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Solution Consider the regions z > 0 and z < 0 separately.
For z > 0

[Step A]

z is less than the specific positive value γ in the shaded regions of the x, y
plane.

[Step B]

0 ∞ ∞ γ/ζ

Pz(γ) =
∫

dζ
∫

dη px,y(ζ, η) +
∫

dζ
∫

dη px,y(ζ, η)
−∞ γ/ζ 0 −∞

[Step C]

d
pz(γ) = Pz(γ)

dγ

= −
∫ 0 dζ γ

px,y(ζ, ) +
∫ ∞ dζ γ

px,y(ζ, )
−∞ ζ ζ 0 ζ ζ

=
∫ ∞ dζ γ

p
−∞ |ζ| x,y(ζ, ) z > 0

ζ
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For z < 0

[Step A]

Now z is less than a specific negative value γ in the shaded regions of the
x, y plane.

[Step B]

∫ 0 ∫ ∞ ∫ ∞ γ/

Pz(γ) = dζ dη px,y(ζ, η) + dζ
−∞ γ/ζ 0

∫ ζ

dη px,y(ζ, η)
−∞

[Step C]

d
pz(γ) = Pz(γ)

dγ

= −
∫ 0 dζ γ ∞ dζ γ

px,y(ζ, ) + px,y(ζ, )
−∞ ζ ζ

∫
0 ζ ζ

=
∫ ∞ dζ γ

px,y(ζ, ) z < 0
−∞ |ζ| ζ

This is the same expression which applies for positive z, so in general one
has

pz(γ) =
∫ ∞ dζ γ

px,y(ζ, ) for all z < 0.|ζ| ζ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−∞
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A common use of functions of a random variable is to carry out a change
in variables.

Example: Uniform Circular Disk Revisited

Given The probability of finding an event in a two dimensional space is
uniform inside a circle of radius 1 and zero outside of the circle.

p(x, y) = 1/π x2 + y2 ≤ 1
= 0 x2 + y2 > 1

Prob
the pola

Solu

[Ste

lem Find the joint probability density for the radial distance r and
r angle θ.

tion

p A]

The shaded area indicates the region in which the radius is less than r and
the angle is less than θ.



46 Probability

[Step B]

P (r, θ) =
∫

p(x, y) dx dy
shaded area

1 θ
= πr2 θr2

=
π 2π 2π

area of disk
p

︸︷︷︸
(x,y)

︸︷︷︸
fraction

︸︷︷︸
shaded

[Step C]
∂ ∂ r

p(r, θ) = P (r, θ) =
∂r ∂θ π

2π 2π r
p(r) =

∫
p(r, θ) dθ =

0

∫
dθ = 2r r < 1

0 π

= 0 r > 1

1 1 r 1
p(θ) =

∫
p(r, θ) dr =

0

∫
dr = 0

0 π 2π
≤ θ < 2π

= 0 elsewhere

Note that r and θ are statistically independent (which is not the case for x
and y) since

1 r
p(r)p(θ) = (2r)( ) = = p(r, θ).

2π π

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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