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4 Sums of Random Variables

Many of the variables dealt with in physics can be expressed as a sum of
other variables; often the components of the sum are statistically indepen-
dent. This section deals with determining the behavior of the sum from the
properties of the individual components. First, simple averages are used to
find the mean and variance of the sum of statistically independent elements.
Next, functions of a random variable are used to examine the probability
density of the sum of dependent as well as independent elements. Finally,
the Central Limit Theorem is introduced and discussed.

Consider a sum Sn of n statistically independent random variables xi.
The probability densities for the n individual variables need not be identical.

n

Sn ≡
∑

xi

i=1

pxi
(ζ) does not necessarily = pxj

(ζ) for i = j

< xi >≡ Ei < (xi − E 2 2
i) >≡ σi

The mean value of the sum is the sum of the individual means:

< Sn > =
∫

(x1 + x2 + · · · + xn) p(x1, x2, . . . , xn) dx1 dx2 · · · dxn

p1(x1)p2(x2) pn(xn)

�

︸ ︷︷ ︸
···

∑n

= [
∫

xipi(xi) dxi][ p j

i=1

∏
j(x ) dxj]︸ ︷︷ ︸ i=j

∫
Ei

︸ ︷︷
1

n

︸
=

∑
Ei

i=1

The variance of the sum is the sum of the individual variances:

V ar(Sn) = < (Sn− < Sn >)2 >

= < (x1 − E1 + x2 − E2 + · · · + xn − En)2 >

�
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The right hand side of the above expression is a sum of terms, each quadratic
in x, having the following form:

< (xi − Ei)(xj − Ej) > = < xixj > − < xi > Ej− < xj > Ei + EiEj

= < xixj > −EiEj

=

{
< x2 2 2

i > −Ei = σi if i = j
0 if i = j

Therefore,
n

V ar(Sn) =
∑

σ2
i .

i=1

In the special case where all the individual xi’s have the same probability
density the above results reduce to

< Sn >= nE 2
i , V ar(Sn) = nσi .

Physically, the width of p(Sn) grows as
√

n while the mean of Sn grows as
n. The probability density becomes more concentrated about the mean as n
increases. If n is very large, the distribution develops a sharp narrow peak
at the location of the mean.

Now turn to the problem of finding the entire probability density, pS(α),
for the sum of two arbitrary random variables x and y represented by the

�

joint density px,y(ζ, η). This is a straight forward application of functions of
a random variable.
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∫ ∞ ∫ α−ζ

PS(α) = dζ dη px,y(ζ, η)
−∞ −∞

d
ps(α) = PS(α)

dα

=
∫ ∞

dζ px,y(ζ, α
−∞

− ζ)

In this expression p(S) is given as a single integral over the joint density
p(x, y). The result is valid even when x and y are statistically dependent.
The result simplifies somewhat when x and y are statistically independent,
allowing the joint density to be factored into the product of two individual
densities.

pS(α) =
∫ ∞

dζ px(ζ)py(α ζ) if x and y are S.I.
−∞

−

The integral operation involved in the last expression is known as convolu-
tion. The probability density for the sum of two S.I. random variables is
the convolution of the densities of the two individual variables. Convolu-
tion appears in other disciplines as well. The transient output of a linear
system (such as an electronic circuit) is the convolution of the impulse re-
sponse of the system and the input pulse shape. The recorded output of a
linear spectrometer (such as a grating spectrograph) is the convolution of the
instrumental profile and the intrinsic spectrum being measured.

The convolution of two functions p(x) and q(x) is designated by ⊗ and
is defined as

p ⊗ q ≡
∫ ∞

p(z)q(x
−∞

− z)dz.

It is easy to show from this expression that convolution is commutative, that
is, the result does not depend on which function is taken first:

a ⊗ b = b ⊗ a.

Convolution is also distributive,

a ⊗ (b + c) = a ⊗ b + a ⊗ c,
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and associative,
a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c.

Perhaps the best way to visualize the convolution integral is in terms of
a series of successive steps.

1. FLIP q(z) ABOUT THE ORIGIN OF ITS ARGUMENT TO FORM
THE MIRROR IMAGE q(−z).

2. SHIFT q(−z) TO THE RIGHT BY AN AMOUNT x TO FORM
q( z + x).−

3. MULTIPLY q(x − z) BY p(z).

4. INTEGRATE THE PRODUCT AND PLOT THE RESULT.
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5. REPEAT 2 THROUGH 4 FOR DIFFERENT VALUES OF x.

If p(z) and q(z) are each represented by a single analytic function for all z
one can work out the convolution integral mathematically with little thought
given to the above graphic procedure. On the other hand, when the input
functions are zero in some regions or are only piecewise continuous, then the
graphic procedure is useful in setting the proper limits of integration.

Example: Sum of Two Uniformly Distributed Variables

Given x and y are two statistically independent random variables, uni-
formly distributed in the regions |x| ≤ a and |y| ≤ b.

Problem Find the probability density p(S) for the sum S = x + y.

Solution The form of the integral will depend on the value of S. Three
separate regions need to be considered. Assume as indicated above that
b < a.

0 < S < a − b
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p(S) =
∫ S+b 1 1 1

( )( ) dx =
S−b 2a 2b 2a

a b < S < a + b−

a

p(S) =
∫ 1 1 a + b

( )( ) dx =
− S

S−b 2a 2b (2a)(2b)

a + b < S

p(S) = 0 since there is no overlap

The symmetry of the problem demands that the result be even in S. The

final result is plotted below.
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When the widths of the two probability densities are the same, the density
for the sum becomes triangular.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Classical Intensity of Unpolarized Light

Given An unpolarized beam of thermal light can be viewed as two sta-
tistically independent beams of equal average intensity, polarized at right
angles to each other. The total intensity IT is the sum of the intensities of
each of the two polarized components, I1 and I2.

Problem Find the probability density for IT using the result from a pre-
vious example that

1
p(I1) = √ exp[−I1/2α] I1 > 0

2παI1

= 0 I1 < 0

where α =< I1 >.

Solution Since the light is thermal and unpolarized, the intensity in each
of the two polarization directions has the same density: pI1(ζ) = pI2(ζ).
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I I

I I

II

I
I

I I
I

∞
p(IT ) =

∫
pI1(I1)pI2(IT

−∞
− I1) dI1

∫ IT

(
exp[−I1/2α] exp[ (IT I1)/2α]

=
− −

0
√

2παI1

) ⎛
⎝

2πα(IT − I1)

⎞
⎠ dI1

1 ∫ I

−
T

√

= exp[ IT /2α] [I1(IT − I1)]
−1/2 dI1

2πα 0

1 2 1 1
= exp[−IT /2α

∫ IT /

] ( I2 2

2πα T−IT 2
− x )−1/2 dx using x 1

/ 4
≡ I − IT

2

π

1
= exp[

︸ ︷︷ ︸

2α
−IT /2α] IT ≥ 0

= 0 IT < 0



Sums of a Random Variables 55

I

I

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the two examples just considered the variables being summed had

probability densities of the same functional form, rectangles for instance.
Certainly this will not always be the case; for example one might be interested
in the sum of two variables, one having a uniform density and the other having
a Gaussian density. Yet even when the input variables do have probability
densities of identical form, the density of the sum will in general have a
different functional form than that of the input variables. The two previous
examples illustrate this point.

There are three special cases, however, where the functional form of the
density is preserved during the addition of statistically independent, similarly
distributed variables. The sum of two Gaussian variables is Gaussian. This
is shown in an example below. Simply knowing that the result is Gaussian,
though, is enough to allow one to predict the parameters of the density.
Recall that a Gaussian is completely specified by its mean and variance. The
fact that the means and variances add when summing S.I. random variables
means that the mean of the resultant Gaussian will be the sum of the input
means and the variance of the sum will be the sum of the input variances.

The sum of two S.I. Poisson random variables is also Poisson. Here again,
knowing that the result is Poisson allows one to determine the parameters
in the sum density. Recall that a Poisson density is completely specified by
one number, the mean, and the mean of the sum is the sum of the means.
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A Lorentzian (or Cauchy) density depends on two parameters and is given
by

Γ 1
p(x) =

π (x − m)2 + Γ2

m =< x >

Γ = half width at half height

The sum of two S.I. Lorentzian random variables is Lorentzian with mS =
m1+m2 and ΓS = Γ1+Γ2. Note that the widths add! Doesn’t this contradict
the rule about the variances adding, which implies that the widths should
grow as the square root of the sum of the squared widths? This apparent
contradiction can be resolved by trying to calculate the variance for the
Lorentzian density.

Example: Sum of Two S.I. Gaussian Random Variables

Given
1

p(x) = √ exp[−(x − E )2
x /2σ2

x]
2πσ2

x

1
p(y) = √ exp[−(y − E 2 2

y) /2σy ]
2πσ2

y

Problem Find p(S) where S ≡ x + y.

Solution

∞
p(S) =

∫
px(x)py(S

−∞
− x) dx

= (2πσxσy)
−1

∫ ∞
exp[

−∞
−(x − Ex)

2/2σ2
x − (S − x − Ey)

2/2σ2
y ] dx

The argument of the exponent in the integral is quadratic in the integration
variable x. It can be simplified by changing variables, ζ ≡ x − Ex, and
defining a temporary quantity a ≡ S − (Ex + Ey), a constant as far as the



Sums of a Random Variables 57

integration is concerned. The argument of the exponent can then be written
and processed as follows.

1
[
ζ2 (a− +

2 σ2

− ζ)2

x σ2
y

]
=

1 σ2 + σ2 2a a2

− x y ζ2 ζ + =
2

[
σ2

xσ
2

−
σ2

y y σ2
y

]

1−
[{

σ2
x + σ2 2 2

y 2a σ a a2 σ2a2

ζ2 ζ
2

− + x x =
σ2σ2 σ2 σ2 σ2 + σ2)

}
+

(

{
σ2

−
σ2 2

x y y y x y y y(σx + σ2
y)

}]

1
⎡⎧⎨(

σ2σ2
)−1

− x

2
⎣ y

( 2
σ2

ζ xa
2

−
) ⎫⎬

+

{
a⎩ σ2 + σ2 σ2 + σ2 ⎭ σ2 + σ2

x y x y x y

}⎤

The second of the two terms in

⎦
{ } brackets in the last line produces a

constant which factors out of the integral. The integral over ζ coming about
from the first term in { } brackets is just the normalization integral for a
Gaussian and has the value (

σ2

2π xσ
2 1/2
y .

σ2 + σ2
x y

)

Bringing all of these terms together gives the probability density for the sum.

p(S) = (2πσxσy)
−1 a2 σ2

exp[− ] 2π xσ
2 1/2
y

2(σ2 + σ2
x y)

(
σ2 + σ2

x y

)

1 (S − (E
= √ exp[ ]

2π(σ2 + σ2)
− x + Ey))

2

2(σ2
x + σ2

y)x y

The result is a Gaussian with mean Ex + Ey and variance σ2
x + σ2

y .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The result above applies to the sum of two statistically independent Gaus-

sian variables. It is a remarkable and important fact that the sum of two
statistically dependent Gaussian variables is also a Gaussian if the two input
variables have a bivariate joint probability density (the special joint density
introduced in an earlier example). Those with a masochistic streak and a
flair for integration can prove this by applying the expression for the density
of the sum of two dependent variables to the bivariate Gaussian joint density.
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Mathematical Digression: Convolution and Fourier Transforms

After the algebra of the last example it is reasonable to ask if there is some
easier way to compute convolutions. There is, and it involves Fourier trans-
forms. This digression is intended for interested students who are familiar
with Fourier techniques.

Let the Fourier transform of f(x) be F (k) and use the notation f ↔ F
to indicate a transform pair.

F (k) ≡
∫ ∞

eikxf(x) dx
−∞

1
f(x) =

∫ ∞
e−ikxF (k) dk

2π −∞

(The Fourier transform of a probability density is called the characteristic
function or moment generating function and is quite useful for more advanced
topics in probability theory.)

One can show that the Fourier transform of the convolution of two func-
tions is the product of the individual Fourier transforms.

If a ↔ A

and b ↔ B

then a ⊗ b ↔ AB

To find the probability density for the sum of two statistically independent
random variables one can multiply the Fourier transforms of the individual
probability densities and take the inverse transform of the product. As a
practical application and example one can show that the sums of Gaussians
are Gaussian, sums of Poisson variables are Poisson, and sums of Lorentzians
are Lorentzian.
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Gaussian

1 (x σ√ exp[
− E)2 2k2

− ] ↔ exp[ikE
2πσ2 2σ2

− ]
2

Poisson ∑∞ 1
λne−λδ(x exp[

=0 n!
− n)

n

↔ λ(eik − 1)]

Lorentzian
Γ 1

exp[imk kΛ ]
π (x − m)2 + Γ2

↔ − | |

Each of these three transforms F (k) has the property that a product of
similar functions preserves the functional form; only the parameters change.
For example if pG(S) represents the sum of two Gaussians, then

σ2k2 σ2k2

pG(S) ↔ exp[ikE − 1 ] exp[ikE2
2

− 2
1 ]

2

(σ2 + σ2)k2

↔ exp[ik(E1 + E ) 1
2 − 2 ]

2

The last expression is the Fourier transform of a Gaussian of mean E1 + E2

and variance σ2 + σ2
1 2. Check to see that the transforms for the Poisson and

Lorentzian behave in a similar manner.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Simple averaging revealed that for statistically independent random vari-
ables the mean of the sum is the sum of the means and the variance is the
sum of the variances. The Central Limit Theorem gives information about
the functional form of the resulting probability density.

Central Limit Theorem (non-mathematical form)
Let Sn be the sum of n statistically independent, identically dis-
tributed random variables of mean Ex and variance σ2

x (which
must be finite). For large n, p(Sn) can often be well represented
by a Gaussian with mean nEx and variance nσ2

x.

1 )
p(Sn)

−(S 2

≈ √ exp[− n − nEx
]

2nσ2
2πnσ2 xx

The vague wording of the theorem as presented here shows immediately why
it is qualified by the adjective “non-mathematical”. Yet this is perhaps the
most useful form of the theorem for our purposes. Consider the specific
wording used here.

• σx (which must be finite)
This excludes cases such as Lorentzian random variables where the den-
sity falls off so slowly with x that the variance is infinite. Of course, for
Lorentzians one does not need a Central Limit Theorem for it should
be clear from earlier discussion in this section that the sum of n statis-
tically independent Lorentzian random variables will be Lorentzian for
any value of n.

• For large n
How large? Mathematicians would be more specific. It will be shown
below that for practical purposes convergence with increasing n is often
quite rapid.
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• can often be well represented by
Certainly not the words of a mathematician! However, the vagueness
is deliberate. The Gaussian result presented is a continuous function
of the sum variable Sn. But a sum of n discrete random variables
will always be discrete, no matter how large n might be. A continuous
function is not going to converge in any mathematical sense to a sum of
δ functions. What actually happens in such cases is that the envelope of
the comb of δ functions approaches a Gaussian shape. A course grained
average of p(Sn) (averaging over a number of discrete values at a time)
would approach the continuous density presented in the theorem.

So much for the limitations of the Central Limit Theorem; now consider
some extensions.

• The Gaussian can be a good practical approximation for modest values
of n. The examples which follow illustrate this point.

• The Central Limit Theorem may work even if the individual members
of the sum are not identically distributed. A prerequisite is that no
individual member should dominate the sum. The necessity for this
restriction can be visualized easily. Consider adding 6 variables, each
uniformly distributed between -1 and 1, and a 7th variable, uniform
between -100 and 100. The density for the sum will look rectangular
with rounded edges near ±100.

• The requirement that the variables be statistically independent may
even be waived in some cases, particularly when n is very large.

The Central Limit Theorem plays a very important role in science and
engineering. Knowingly or unknowingly, it is often the basis for the assump-
tion that some particular physical random variable has a Gaussian probability
density.
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Example: Sum of Four Uniformly Distributed Variables

Consider a random variable x which is uniformly distributed between −a
and a.

The sum of only four such variables has a density which is reasonably close to
the CLT approximation. An earlier example found the density for a sum of
two of these variables to be triangular. Since convolution is associative, the
density of the sum of four can be found by convolving the triangular density
with itself. The result is as follows.

p(S) = 1 3 2 3
96a4 (32a − 12aS + 3|S| ) 0 ≤ |S| ≤ 2a

= 1
96a4 (4a − |S|)3 2a ≤ |S| ≤ 4a

= 0 4a ≤ |S|

The probability density for the sum is plotted below for a = 1. In this
case the mean of the single random variable is zero and its variance is 1/3.
The CLT approximation has also been plotted, a Gaussian with zero mean
and variance equal to 4/3. Even though the density for a single variable is
discontinuous, the density for the sum is quite smooth. The good match to
the Gaussian in this example when the number of variables in the sum, n,
is as small as 4 is due to the fact that the single density is symmetric and
falls off rapidly with increasing argument. But note that the true density
for the sum is zero beyond |S| = 4 while the Gaussian is finite. One could
say that the percentage error is infinite beyond |S| = 4. Well, you can’t
have everything. This does illustrate, however, the problems encountered
in formulating a mathematical statement of the convergence of the Central
Limit Theorem.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: Sums of Exponentially Distributed Variables

A single sided exponential is an example of a density that is both discon-
tinuous and asymmetric. It falls off more gradually with increasing argument
than does a rectangular or Gaussian density. In this case convergence to the
CLT approximation requires a larger number of elements, n, in the sum.

1
p(x) = e−x/a x > 0

a

= 0 x < 0

Here the mean is a and the variance is a2. This density is sufficiently simple
that the repeated convolution necessary to find the density for the sum of n
identical statistically independent variables can be carried out analytically.

Sn−1

p(S) =

[
−

(n 1)!an

]
e S/a S ≥ 0−

= 0 S < 0

This result is shown below for a = 1 and several values of n. The Gaussian
approximation is also shown for comparison.
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Example: Poisson Density for Large < n >

The Central Limit Theorem applied to sums of discrete random variables
states that the envelope of the train of δ functions representing p(S) should
approach a Gaussian. Here the Poisson density is used to illustrate this
behavior. The graphs on the following page show the Poisson density for
several values of the mean number of events < n >. (Recall that for a Poisson
density, the variance is equal to the mean.) The dots indicate the coefficients
of the delta functions that would be located at each positive integer value of
S. The dashed lines show the CLT approximation

1 (S
p(s) = √ exp[

− < n >)2

2π < n >
− ].

2 < n >

Since the sum of Poisson random variables also has a Poisson density, the
case for which < n >= 20 could be the result of adding 10 variables of mean
2 or of adding 5 variables of mean 4. For the Poisson, one can see that it
is the mean of the final density, not the number of statistically independent
elements in the sum, which determines the convergence to the CLT result.
The envelope of the density of a single Poisson random variable will approach
a Gaussian if the mean is large enough!

The fact that a single Poisson density approaches a Gaussian envelope for
large mean is not typical of discrete densities. Consider the Bose-Einstein (or
geometric) density that was treated in a homework problem. For that density
the probability of obtaining a given integer decreases monotonically with
increasing value, no matter how large the mean of the density. In contrast,
the density for the sum of 10 identical Bose-Einstein random variables, each
with mean 2, would not be of the Bose-Einstein form and, following the CLT,
would exhibit a peak in its envelope near S = 20.
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