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PROFESSOR: OK, let me get going. Last time we were talking about multi-particle states and

tensor products. And for that, we explained that if we have a system, a quantum

mechanical system of one particle described by a vector space V, and the quantum

mechanical system of another particle described with a vector space W, the

quantum mechanics of the total system composed by the two particles is defined on

a new vector space called the space V tensor W. And that was a construction that

showed that in particular it was not true to say that, oh if you want to know the

system of particle 1 and 2, you just tell me what state particle 1 is and what state

particle 2 is, and that's the end of the story. No, the story is really more

sophisticated than that.

So the typical elements on this space were of the form aij vi cross wj. And it's a sum

over i and j numbers times these vectors. So you pick a vector in the first vector

space, a vector in the second vector space, you put them in here and take linear

combinations of them. So that's the general state in the system.

Now we said a few things about this. One thing I didn't say too much about was the

issue of the vector 0 in this tensor space. And well, vector 0 is some element of any

vector space is an important element. And we could get a little confused about how

it looks.

And here's for example, the vector 0 in v cross w. An example of the vector 0 is the

vector 0 tensor wi. If you put in the first input, the vector 0, that's it. That is also the

vector 0 in here.

Vi tensor the vector 0 in w. Here is 0 in w. Here is 0 in v. This is also 0. It's maybe a

little surprising. Now how do we see that? Well we had a property. For example, this
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one. av tensor w is equal to av tensor w, where a is a number.

So pick a equals 0. Well 0 times any vector is the 0 vector. 0 cross w. But 0 times

any vector is also the vector 0. So this is the 0 in v cross w. So 0 cross w is the

vector 0. Once you put 0 in one of the two inputs, you're there. You're at 0. You

don't have more.

So that's just a comment on the vector 0. Now we did a few things. And one thing I

didn't do last time was to define an inner product on the new vector space. So let's

define a way to get numbers from one vector in the tensor space and another

vector in the tensor space.

So inner product. And again, here you're supposed to define it to your best

understanding and the hope that, once you make the right definitions, it has all that

axiomatic properties it should have. So let me take the following thing. The inner

product with this thing aij vi omega j with bpq vp wq.

So I will define this by assuming the linearity in the inputs on the right inputs and the

anti-linearity here on the left input. So this would be the sum over inj here. So I'll put

sum over inj aij star sum over pq bpq and then vi wj comma vp wq.

So by declaring that this is the case, I'm saying that the inner product in the tensor

space has the-- I'm demanding it has the properties that we expect. If you have a

vector plus another vector here, well you get this times the first plus this times the

second. So you can take the sums out and arrange it this way.

But I still haven't got a number, and the inner product is supposed to be a number.

So how do we get a number at this stage? I have this thing, and nobody has told me

what this is supposed to be. At this stage, the only thing you can say is, well, you

know I suspect that, if I had an inner product in V and I had an inner product in w, I

must have an inner product here, and somehow I should use that.

So they still define to be ij pq aij bpq. And then what you do is use the inner product

in v to get a number from these two vectors. This is going the v inner product. And

use the inner product on w to get a number from the two w vectors. And that's it.
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The end of the definition.

Now here maybe this is the sort of most interesting step, where this part was set

equal to this. And consistent with what I was telling you about 0, suppose any of this

vi was 0. If this vi was 0, we would have 0 with vp. That would be 0, so this whole

number is 0.

So the way this can happen is one of the vectors must be 0 here. And well, you

have the 0 vector here, and the zero vector inner product with anything is 0. So it's,

again, consistent to think that, once you put one of these entries to 0, you've got the

0 vector.

So where are we going today? Well, we have now the inner product, and I want to

go back to a state we had last time. What we're going to do today is define what we

called an entangled state. Then we will consider basis of entangled states, and we

will be able to discuss this sort of nice example of teleportation, quantum

teleportation.

So that's where we're going today. I wanted to remind you of a calculation we were

doing last time. We had established that there was a state in the tensor product of 2

spin 1/2 particles. And the state was alpha plus tensor minus minus minus tensor

plus.

Now you can sometimes-- this is an example of a superposition of vectors of the

from in the v cross w. So here is a vector of that form. There is a vector of this form.

Sometimes we put here 1 and 2. And sometimes it will be useful to put those labels.

Because if you don't put the labels, you better make sure that you're always talking

that the first ket, is the one for the first vector space, and the second ket is the one

for the second vector space.

There's nothing really known commutative here. So if somebody would write for you

1 minus 2, or they would write minus 2 1, both of you would be talking about the

same state. But if you don't put the labels, you know you're not something about the

same state, because you assume always the first one goes to the first Hilbert space.
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The second one goes with the second vector space.

So we considered an entangled state of two spin 1/2 particles. I'm not using-- it's not

fair to use the word entangled yet, but we'll be able to say this very soon. So the

one thing we can do now given the inner product is try to normalize this state.

So how do we normalize this state? Well, we must take the inner product of this

state with itself. So psi psi. So then what do we do? Well, given these rules, we're

supposed to take all this vector here, all that vector there, 1 alpha-- the alpha that is

on the left goes out as an alpha star. The alpha that this on the right goes out as an

alpha. And we have plus minus minus minus plus inner product with plus minus

minus minus plus.

Now this is easier than what it seems from what I'm writing. You will be able to do

these things, I think. Or you can already maybe do them by inspection. Basically at

this stage, you have to do each one with each one here. And let's see what we get.

Well, what is the inner product of this with this? This works, because the inner

product of plus with plus is 1 and minus with minus is 1.

This on the other hand, doesn't give any contribution, because the first one is a plus

has 0 inner product with a minus. A minus has 0 with a plus. That doesn't matter.

It's an overkill. So this one couples with this, and this one couples with that.

Another way people would do this is to say oh don't worry just take the bra here. So

it's plus minus. Here is one. I'll put the labels too. Minus the bra of the minus is the

minus like that. 1 plus 2.

And now you do this with this ket, the plus minus 1 2 minus the minus plus 1 2. And

bras and kets, you know that this one goes with this one. Plus plus, minus minus,

this one goes with this one. And here I put the labels, because when I form the bra,

it's not obvious which one you would put first, but it doesn't really matter.

So back here, we have norm of alpha squared. And this with this is 1. And minus is

one, this is another one. So this is 2 alpha squared. So if I want it to be normalized, I

take alpha 1 over square root of 2. And this is the well normalized state. So this is
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the unit normalized state.

So we have this state. This state is something you've played with over last week. Is

that state that we started very fine in lecture that had 0 z component of angular

momentum, 0 x component of angular momentum, and 0 y component of angular

momentum. Total angular momentum as we defined it. And this has a state with

absolutely no angular momentum.

And what you verified in the homework was that that state, in fact, is rotational

invariant. You apply a rotation operator to that state by rotating in both spaces, and

out comes the same state. The state is not changed. So it's a very interesting state

that will be important for us later.

All right, so having taken care of inner products and normalizations, let's talk a little

about entangled states. So entangled states. So these are precisely those states in

which you cannot say, or describe them by saying particle one is doing this, particle

two is doing that.

You've learned that v cross w includes a state superpositions alpha ij vi cross

omega j. The question is, if somebody hands you a state like this, maybe you could

do some algebra or some trickery. And is it equal, you ask, to some sort of vector u

star tensor v star times some vector w star. Is it equal? Is there vectors v star and

omega star belonging to v and belonging to w in such a way that this thing, the sum,

can be written as a product of something and that.

If you would have that, then you would be able to say look, yes, this is an interesting

state, but actually it's all simple here. Particle one is to state v star. Particle two is in

state w star. If this has happened, if so, this state of the two particles is not

entangled.

So if you can really factor it, it's not entangled. If there are no such vectors v star

and w star, then it is entangled. So you can say, well, it's a complicated factorization

problem. And indeed, it might take a little work to figure out if a state is entangled or

not.
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It's not a basis dependence problem. It's not like it's entangled in one basis or not.

Here is a state, and you find any two things that tensor this way give you the state.

So the simplest example to illustrate this is two dimensional vector spaces, v and w.

Two dimensional complex. So v will have a basis e1 and e2. w will have a basis f1

and f2. And the most general state you could write is a state, general state, is a

number a11 e1 f1 plus a2 e1 f2 plus a21 e2 f1 plus a22 e2 f2. That's it.

There's two basis states in v, two basis state in w. v cross w is dimension for

product of dimensions for basis states, the products of the e's with the f's. So that's

it. That's the general vector.

The question is if this is it equal to something like a1 e1 plus a2 e2. Some general

vector, you write the most general vector in v, and you write the most general vector

b1 f1 plus b2 f2 in w. And you ask is it equal to a product, tensor product, of some

vector in v with some vector in w. So the question is really are their numbers a1, a2,

b1, and b2 so that this whole thing gets factorized.

So that's happily not a complicated problem. We could see if those number exist, if

a1, a2, b1, b2 exist, then the state is not entangled. You've managed to factor it out.

So let's see. Well, we know the distributive laws apply. So actually e1 f1 can only

arise from this product. So to have a solution you must have that a11 is equal to a1

b1. a12 can only appear from the product of e1 with f2. So a12 must be equal to a1

b2. a21 must be equal to a2 b2. And a22 must be equal to a2 b2. And we must try

to solve for these quantities.

Actually, there is a consistency condition. You see these quantities repeat here in a

funny way. If this holds from this, a11 a22 minus a12 a21 is equal to what? a11 a22

would be a1 b1 a2 b2. And a12 a21 also have the same things. a1 b2 a2 b1. Well,

both terms have both a's and both b's, so this system only has a solution if this

product is 0.

So if you give me four numbers, if you hope to factorize it, you must have the
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determinant of this matrix-- if you collapse it into a matrix, a11 a12 a21 a22, if you

encode the information about this state in a matrix, it's necessary that the

determinant of the matrix a be equal 0. So the determinant of a is equal to 0 is

certainly necessary for the factorization to take place. But a very small argument

that will be in the notes, or you can try to complete it, shows that the determinant

equal to 0, in fact, guarantees that then you can solve this system. There's a

solution.

And this is not complicated. So determinant equals 0 is actually the same as not

entangled. We've done not entangled. So there's a solution implies determinant a

equals 0, but determinant of a equals 0 also implies not entangled. You do that by

solving this.

Let's not spend time doing that. The basic way to do it is to assume-- consider, say,

a11 equals 0 and solve it. Then a11 different from 0, and then you can show that

you can choose these quantities. So it can be factored.

And you have that, if these numbers are such that the determinant is 0, then the

state is entangled. And it's very easy to have a determinant of this non-zero. For

example, you could have these two 0 and these two non-zero. That will be

entangled because the determinant is non-zero. You can have this two that will be

entangled. There are many ways of getting entangled states.

So in fact, there's enough ways to get entangled states that we can construct a

basis. We had a basis here of e1 f1 e2 f2. This thing. This four vector basis. We can

construct a basis that is all the states, all the basis vectors are entangled states.

That's what we're going to do next. But maybe it's about time for questions, things

that have become a little unclear as I went along. Yes?

AUDIENCE: So what exactly does an entangled state mean? What are the [INAUDIBLE] to give

me an entangled state.

PROFESSOR: Well, the main thing that it happens is that there will be interesting correlations when

you have an entangled state. If you have an entangled state and you find a state
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that is not entangled, you can say particle one is doing this and particle two is doing

that. And particle two is doing this independent of what particle one is doing.

But when a state is entangled, whatever is happening with particle one is correlated

with what is happening in particle two in a strange way. So if particle one is doing

something, then particle two is doing another thing. But if particle one is doing

another thing, then particle two is doing something. And these particles can be very

far apart, and that's when it gets really interesting.

So we're going to do a lot of things with entangled states. Today we're doing this

teleportation using entangled state, and you will see how subtle it is. Next time we

do EPR, these Einstein Podolsky Rosen arguments and the Bell inequalities that

answered that with entangled states. There's a couple of problems in the homework

set also developing entangled states in different directions. And I think by the time

we're done, you'll feel very comfortable with this.

So a basis of entangled states. Here are those. We're going to use spins. So we're

going to use v is the state space of spin 1/2. And we're going to consider a v tensor

v where this refers to the first particle and this this to the second particle.

So let's take one state, phi 0, defined to be 1 over square root of 2, and I don't put

indices. And probably at some stage, you also tend to drop the tensor product. I

don't know if it's early enough to drop it. Probably we could drop it. We'll put plus

plus minus minus.

Of course, people eventually drop even the other ket and put it plus plus. So those

are the evolutions of notation. As you get to more and more calculations, you write

less, but hopefully, it's still clear. But I will not do this one. I will still keep that

because many times, I will want to keep labels. Otherwise, it's a little more

cumbersome.

So this state is normalized. Phi0 phi0 is equal to 1. It's the state we built. Oh, in fact,

I want it with a plus. Sorry. It's similar to the state we had there.

And by now, you say, look, yes, it's normalized. Let's take the dual. Plus plus with
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plus plus will give me 1. The minus minus with minus minus will give me 1. This is 2.

1 over square root of 2 squared, 1. It should become sort of easy by inspection that

this is normalized.

And this is entangled state because in the matrix representation, it's a 1 here and a

1 there. You have the 1 1 product and the 2 2 product. So 1 1, the determinant is

non-zero. There's no way, we've proven, you can find how to factor this. There's no

alpha. There's no way to write this as an alpha plus, plus beta minus, times a

gamma plus, plus delta minus. Just impossible. We've proven it. It's entangled.

So this is an entangled state, but the state space is four dimensional. So if it's four

dimensional, we need three more basis states. So here they are. I'm going to write

a formula for them.

Phi i for i equals 1, 2, and 3 will be defined to be the following thing. You will act with

the operator 1 tensor sigma i on phi 0. So three ways of doing. Let's do 1, for

example, phi 1. What is it?

Well, you would have 1 times sigma 1 acting on the state phi 0, which is 1 over

square root of 2 plus, plus, plus minus, minus. Well, the 1 acts on the first ket, the

sigma acts on the second ket.

So what do we get here? 1 over square root of 2-- let me go a little slow-- plus

sigma 1 plus, plus, minus sigma 1 minus. And this is phi 1 equals sigma 1 plus is the

minus state, and sigma 1 minus is the plus state. 1 over square root of 2. Those are

things that you may just remember sigma 1 is this matrix. So you get 1 over square

root of 2 plus, minus, plus, minus, plus. So that's phi 1.

And phi 1 is orthogonal to phi 0. You can see that because plus minus cannot have

an overlap with plus plus, nor with minus minus. Here minus plus, no. In order to get

something, you would have to have the same label here and the same label here so

that something matches.

Well, we can do the other ones as well. I will not bother you too much writing them

out. So what do they look like? Well, you have phi 2 would be 1 tensor sigma 2 on
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phi 0. And that would give you-- I will just copy it-- an i because sigma 2 has i's

there. So i over square root of 2 plus, minus, minus, minus, plus.

Finally, phi 3 is 1 tensor sigma 3 phi 0. And it's 1 over square root of 2 plus, plus,

minus, minus, minus. We got the states here. Let's just check they're orthonormal.

Well, here's one thing. If you take phi 0 with 1 tensor sigma i phi 0, which is phi 0

with phi i. Well, this is 0. You could say, well, how do you know? How do you prove it

easily?

Well, I think the best way is just inspection, so let's look at that. Phi 1, we said, is

orthogonal to phi 0 because it has plus minus and minus plus, and that can never

do anything with that. Phi 2 also has plus minuses and minus pluses, so we can

never have anything to do with phi 0.

The only one that has a chance to have an inner product with phi 0 is phi 2 because

it has a plus plus and a minus minus. On the other hand, when you flip them, this

term with a plus plus of phi 0 will give you 1, but here's a difference of sign. So this

with the second term of phi 00 will give you a minus, and therefore, it will be 0. So

these things are all 0 by inspection.

You don't really have to do a calculation there. The one that takes a little more work

is to try to understand what is the inner product of phi i with phi j. Now, you could

say, OK, I'm going to do them by inspection. After all, there's just six things to check.

But let's just do it a little more intelligently. Let's try to calculate this by saying, well,

this is phi 0. Since the Pauli matrices are Hermitian, this phi i is also 1 tensor sigma

i. They're Hermitian, so acting on the left, they're doing the right thing.

Given our definition, here is a definition as well. So you take the bra and that's what

it is. It would have been dagger here but it's not necessary. And then you have the

phi j, which is 1 tensor sigma j. And that's phi 0 here.

That sounds like the kind of thing that we can make progress using our Pauli

identities. Indeed, first thing is that the product of operators, they multiply just in that
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order in the tensor product. So phi 0, you have 1 times 1, which is 1 tensor sigma i

sigma j phi 0.

And this is equal to phi 0 1 tensor. Now, the product of two Pauli matrices gives you

an identity plus a Pauli matrix. You may or may not remember this formula, but it's 1

times delta ij plus i epsilon ijk sigma k phi 0.

Now, what do we get? Look, the second term has a sigma k on phi 0, so it's some

number with a psi k here, while the first term is very simple. What do we get from

the first term? From the first term, we get-- well, 1 tensor 1 between any two things

is nothing because the 1 acting on things and the 1 acting on another thing is 0. So

the unit operator in the tensor product is 1 tensor 1. That's nothing whatsoever.

So what do you get here? Delta ij times phi 0 phi 0 plus i epsilon ijk phi 0 phi k. But

that is 0. We already showed that any phi i with phi 0 is 0. And this is 1.

So what have we learned? That this whole thing is delta ij. And therefore, the basis

is orthonormal. So we've got a basis of orthonormal states in the tensor product of

two spin 1/2 particles.

And the nice thing about this basis is that all of these basis states are entangled

states. They're entangled because they fill different parts of the matrix. Here you

have 1 and 1 and minus 1 here. This would be plus minus, would be an i here and a

minus i there. The determinants are non-zero for all of them, and therefore, they

can't be factored, and therefore, they're entangled.

So the last thing I want to do with this is to record a formula for you, which is a

formula of the basis states in the conventional way, written as superposition of

entangled states. So for example, you say, what is plus plus?

Well, plus plus, looking there, how would you solve it? You would solve it from phi 0

and phi 3. You would take the sum so that the minus minus states cancel. Phi 0 and

phi 3, and therefore, this state must be 1 over square root of 2, phi 0 plus phi 3. A

useful relation.
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Then we have plus minus. Then we have minus plus. And finally, minus minus. Well,

minus minus would be done by 1 over square root of 2 phi 0 minus phi 3.

The other ones, well, they just leave complex numbers. Phi 1 has this plus minus,

and this has a plus minus in phi 2. The only problem is it has an i, so you must take

this state minus i times this state will produce this state twice and will cancel this

term. That's what you want.

So phi 1, this should be 1 over square root of 2 phi 1 minus i phi 2. And this one

should be phi 1 plus i phi 2. And if this was a little quick, it's just algebra, one more

line. You do it with patience in private.

So here it is. It's the normal product, simple product basis expressed as a

superposition of entangled states. This is called the bell basis, this phi 1 up to phi 4,

the bell basis.

And now, I have to say a couple more things and we're on our way to begin the

teleportation thing. Are there questions? Any questions about bell basis or the basis

we've introduced? Any confusion? Errors on the blackboard?

So we have a basis, and I want to make two remarks before we get started with the

teleportation. It's one remark about measurement and one remark about evolution

of states. Two facts.

The first fact has to do with measurement in orthonormal basis. If you have an

orthonormal basis, the postulate of measurement of quantum mechanics can be

stated as saying that you can do an experiment in which you find the probability of

your state being along any of these basis states of the orthonormal basis. So you

can do an experiment to detect in which of the basis states the state is.

Now, the state, of course, is in a superposition of basis states, but it will collapse into

one of them with some probability. So the Stern-Gerlach experiment was an

example in which you pick two basis states, orthogonal, and there was a device that

allowed you to collapse the state into one or the other. So this is a little more

general, not just for two state systems. If there would be a particle with three states,
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well, orthonormal states, then there is in principle an operator in quantum

mechanics that allows it to measure which of these basis states you go into.

So let me state this as saying, given an orthonormal basis, e1 up to en, we can

measure a state, psi, and we get that the probability to be in ei is, as you know, ei

overlapped with a state squared.

And if you measure that this probability, the state will collapse into one of these

states. So after the measurement, the state goes into some ek. There are different

probabilities to be in each one of those basis states, but the particle will choose one.

Now, the other thing I want to mention is that a fact that has seemed always a gift,

the Pauli matrices are not only Hermitian, but they square to one, and therefore

they're also unitary. So the Pauli matrices are unitary. So actually, they can be

realized as time evolution.

So you have a state and you want to multiply it by sigma 1. You say, OK, well, that's

a very mathematical thing. Not so mathematical because it's a unitary operator, so it

could respond to some time evolution. So we claim there is a Hamiltonian that you

can construct that will evolve the state and multiply it by sigma 1.

So all these Pauli matrices, sigma 1, sigma 2, and sigma 3 are unitary as operators.

They can be realized by time evolution with a suitable Hamiltonian. So if you're

talking spin states, some magnetic field that lifts for some few picoseconds

according to the dipole, and that's it. It will implement sigma one.

Just in fact, you can check, for example, that e to the i pi over 2 minus 1 plus sigma

i. This is i this, and this is Hermitian. Well, this is 1 and sigma i. 1 and sigma i

commute, so this is equal to e to the minus i pi over 2 times e to the i pi sigma 1

over 2.

The first factor is a minus i, and the second factor is 1 times cosine of pi over 2 plus

i sigma 1 sine of pi over 2. So this is minus i times-- this is 0-- times i sigma 1. So

this is sigma 1.
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So we've written sigma 1 as the exponential of i times the Hermitian operator. And

therefore, you could say that this must be equal to some time times some

Hamiltonian over h bar. And you decide, you put the magnetic field in the x, y, z

direction. You realize it. So sigmas can be realized by a machine.

We're all done with our preliminary remarks, and it's now time to do the teleportation

stuff. Quantum teleportation. So we all know this teleportation is the stuff of science

fiction and movies and kind of stuff like that, and it's pretty much something that

was, classically, essentially impossible. You have an object, you sort of

dematerialize it and create it somewhere else. No basis for doing that.

The interesting thing is that quantum mechanically, you seem to be able to do much

better, and that's the idea that we want to explain now. So this is also not something

that has been known for a long time. The big discovery that this could be done is

from 1993. So it's just 20 years ago people realized finally that you could do

something like that.

In that way, quantum mechanics is, in a sense, having a renaissance because

there's all kinds of marvelous experiments-- teleportation, entanglement, ideas that

you could build one day a quantum computer. It's all stimulating thinking better

about quantum mechanics more precisely, and the experiments are just amazing.

This thing was done by the following people. We should mention them. Bennett at

IBM, Brassard, Crepeau-- can't pronounce that-- Jozsa, all these people in

Montreal. Peres, at Technion, and Wootters at Williams College. 1993.

So big collaboration all over the world. So what is the question that we want to

discuss? In this game, always there's two people involved, and the canonical names

are Alice and Bob. Everybody calls Alice and Bob. It's been lots of years that people

talk about Alice and Bob. They use it also for black hole experiments. Depending on

your taste, Alice stays out and Bob is sucked into the black hole, or Bob stays out,

Alice goes down. But it's Alice and Bob all the time.

So this time, the way we're going to do it, Alice has a quantum state. It has been
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handed to her, and it's a state of a spin 1/2 particle. Spin 1/2 is nice because you

have discrete labels.

So she has this state. It's alpha plus beta minus. And she has it carefully there in a

box, just hoping that the state doesn't get entangled with anything and disappear, or

doesn't get measured. And her goal is to send this state to Bob, who's far away.

So Alice is sitting here and has this state, and Bob is sitting somewhere here and

has no state. And she wants to send this state. This is the state to be teleported.

Now, there's a couple of things you could try to do before even trying to teleport

this. Why teleport it? Why don't you create a copy of this state and just put it in

FedEx and send it to Bob, and he gets it?

The problem is that there's something in quantum mechanics, something called no

cloning, that you can't create a copy of a state, actually, with a quantum mechanical

process. It's really a funny thing. You've got a qubit-- this is called a qubit-- a

quantum bit. Bit is something that can be 0 or 1. Quantum, it can be two things. So

instead of calling it a spin state, sometimes people call it a qubit. For us, it's a spin

state. It has two numbers.

And there's no cloning. We will not discuss it here. It's a nice topic for a recitation.

It's a simple matter. You can't make a copy. So given that you can't make a copy,

let's avoid that idea, save ourselves $15 of FedEx and just try to do something else.

So the one thing Alice could do is that she could say, all right. Well here is alpha and

beta. Let me measure the state. Find alpha and beta. And then I'll of send that

information to Bob. OK. But she has one copy of the state. How is she going to

measure alpha and beta with one copy of the state. She puts it through a Stern-

Gerlach experiment, and the particle comes out the plus side. Now what?

The probability that it went to the plus. You've got some information about the alpha

squared. Not even because you just did the experiment once and your cubit is

gone.
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So Alice actually can't figure out alpha and beta. So if she's handed the qubit, she

better not measure it. Because if she measures it, she destroys the state, goes into

a plus or a minus, and it's all over. The state is gone before she could do anything.

So that doesn't work either.

Now there's the third option. Maybe Alice cannot talk to Bob, and Alice created that

state with some Hamiltonian. And she knows because she created it what alpha and

beta is. So she could in principle tell Bob, OK. Here is alpha and here is beta.

Create it again. That would be a fine strategy, but actually there's even plausibly a

problem with that. Because maybe she knows this state, but alpha is a number. It is

0.53782106, never ends. Doesn't repeat. And she has to send that infinite string of

information to Bob, which is not a good idea either. She's not going to manage to

send the right state.

So these are the things we speculate about because it's a natural thing to one

wonder. So what we're going to try to do is somehow produce an experiment in

which she'll take this state, get it in, and somehow Bob is going to create that state

on his other side. That's the teleportation thing that we'll try to do.

So let's do a little diagram of how we're going to do this. So here is going to be the

state that is going to be teleported. We'll call it the state C. So I'll write it as psi alpha

plus in the state space C sub particle plus beta minus in this state space C. And C is

the state she is going to try to teleport.

But now they're not going to be able to do it unless they use something different.

They try something different. And the whole idea is going to be to use an entangled

state. So basically what we're going to do is we're going to put the source here,

entangled state source. And we're going to produce and an entangled state of two

particles. And one particle is going to be given to A, to Alice. And one particle is

going to be given to Bob. So particle B for Bob is going to be given to Bob. And

particle A is going to be given to Alice. And this is an entangled pair.

So there it is. Now what's going to happen? What are we going to do?

Entanglement really correlates what goes here with what goes in there. Now
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entanglement happens instantaneously, and we can discuss this. You have no way

of sending information through entanglement in general. There's no such thing as

learning something about A when B doesn't measure, learning anything nontrivial

about A. So the entangled state is there, and that's what we're going to try to use in

order to do the teleporting.

Now morally speaking, suppose I wanted to teleport myself from one place in this

room to another. What I would have to do is create an enormous reservoir of

entangled states. So here's my generator, and I create billions of entangled pairs.

And I put them all here, all the ones here and all the corresponding pairs over there.

And then I sort of-- somebody takes me and these billions of entangled pairs, one

side of the pair, and does a measurement in which every atom or every quantum

state in my body is measured with some entangled state. They've done the

measurement, and boom. I reappear on the other side. That's what's going to

happen.

So we're going to do this. We're going to have this state, and now we're going to a

measurement between this state and this state. Alice is going to do a measurement.

That's going to force this particle to actually pretty much become the state you

wanted to teleport. So that's the goal.

So let me say a couple more things. Alice will have to send some information

actually. Because she is going to have to do a measurement, and she has a

console with four lights, zero, one, two, and three. Four lights. And when she will do

her measurement, one of the lights will blink. And she will have to tell Bob which one

blinked. So she will have to send the number and information of two bits. Because

with two bits, you can represent any of four numbers, binary code.

So she will send information of which clicked. And then Bob will have a machine with

four entries here. And according to the information that he gets, he will make the

state to go through one of those machines, the zero, the one, the two, or the three.

So he will push B into one of them out, we claim, will come this teleported state.

So that's the set up. You have to get a feel for the set up. So are there questions on
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what we're doing?

AUDIENCE: So after teleportation would have some kind of copy [INAUDIBLE]?

PROFESSOR: No. After the replication, this state will be destroyed beyond repair as you will see.

So there will not be a copy created by this procedure. You destroy. It's really what

teleportation was supposed to be. Not to create another copy of you there, but to

take you there. Destroy you here and recreate you there. So no other copy. Other

questions? Yes.

AUDIENCE: Does this also work if C is an entangled state?

PROFESSOR: If what?

AUDIENCE: If C say itself contains different parts which are entangled with each other?

PROFESSOR: Well, it's a more complicated thing. I'm pretty sure it would work.

Maybe you would need more than one entangled pair here. You would need a

source that is more complicated. More questions.

AUDIENCE: What do you mean about pushes the state into one of the [INAUDIBLE]?

PROFESSOR: What do I mean by pushes it through one of them? Well you know, Hamiltonians.

You get your state. You can put them in a magnetic field. Let them evolve a little bit.

Those are machines. So any of these machines are some unitary time evolution. It

does something to the state.

AUDIENCE: But one [INAUDIBLE]

PROFESSOR: Sorry.

AUDIENCE: Are there Hamiltonians that are based off of what Alice measures?

PROFESSOR: Yes. So they will be correlated as you will see. So if Alice measures that the light

zero beeps, the instruction for Bob is to send the state through the zero

Hamiltonian, and one, two, and three Hamiltonian. More questions? It's good to

really have a good feeling of this or what we're trying to do and why it's nontrivial.
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Yes.

AUDIENCE: This might be a little too intuitive, but in a state which-- Can a Hamiltonian which

Bob needs to send B through in order to yield the same state that Alice had, can

that also be transmitted quantumly through qubits? Or would you just get like an

infinite line of qubits needing to--

PROFESSOR: No no. You know, this is a devise that they can build by themselves. As you will see

once we do the calculation, Alice will construct a device that has these four lights

and she knows what they mean. And Bob will construct a device that has these

things, and they can use it to transport any state. So these machines are

independent of the state you want to teleport. You teleported this, you want to

teleport another state with alpha prime and beta prime? Sure. Use exactly the same

machines, give me another entangled pair, and do it.

AUDIENCE: Well, I think what I meant is that the information between the two machines, does

that have to be transmitted classically, or is there some way to transmit--

PROFESSOR: There's no real information. The machines were built, say, in the same laboratory of

IBM. And then they're built, and we will tell you how to build each of these machines.

And then just put aside, taken away by these two people, and then we'll do it.

There's no mystery of sending information about it. That probably will become clear

with the computation, which I better start doing soon. Yes.

AUDIENCE: The difference--

PROFESSOR: Louder.

AUDIENCE: Just a question about the first part on the left side of the board. So, when we first do

a measurement, does that mean it's something that's like a microscopic quantity,

like an energy or something? Or does it just refer to any?

PROFESSOR: When we refer to measurements and quantum mechanics, we talk-- Let me give

you just a little bit of intuition here. We typically talk about measuring permission

operators, because they have [INAUDIBLE] values. So we don't have to say what
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they are-- energy, momentum. It's a permission operator you measure. And

projector operators into basic states of permission operators. So you could imagine

that's one way of thinking about these measurements.

OK. So let's do this. All right. The state to be teleported is this one, and the A B pair

is an entangled state. So it will be one of the bell states, psi zero AB 1 over square

root of 2 plus A plus b plus minus A plus minus B. So this is the state they share. Of

course, Alic only has a handle on particle A, and Bob only has a handle on particle

B. Nevertheless the state is entangled even though this could be 200 kilometers

apart.

So the total state-- well, we've been tensoring two things. Well, tensoring three is

three particles. So I don't think you will be too unhappy to just tensor the whole

thing. So psi zero AB tensor alpha plus C plus beta minus C.

So here comes the interesting point. Alice has available the state A. The particle A is

not the state A because A is in a funny thing. It's entangled. But it has a particle A

available, and it has a particle C available. So Alice is going to do a measurement,

and it's going to be a sneaky measurement. It's going to use a bases. Since she has

two particles, she can choose a basis of two particle states. Any orthonormal basis

will do well by the idea that we can measure with any orthonormal basis. So what

she's going to try to do is use the bell basis for A and C.

So let's try to think of what that means. That requires a small calculation here. So

this is equal to 1 over square root of 2 plus-- so I anticipate that this will become

clear in a second, what that measurement means-- plus minus A minus b Tensor

alpha plus plus beta minus C. So I just wrote what this is. OK.

Some algebra. This is the total state, psi total. Let's multiply these things out, and I

will keep the labels all the time because I don't want there to be any confusion about

what's happening. So what do we get first? Alpha multiplying plus of A. I should

write in plus of B, but the order doesn't really matter if I keep the labels. So I'll put

plus of C times plus of B.
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Then keep multiplying. So we have plus beta, from this with that. So I'll have plus of

A minus of C and plus of B. Maybe it's easier to read if I use another line. So I now

must multiply the second state times this. So I get plus alpha minus of A with plus of

C and minus of B. So this is this times that, minus of A plus of C minus of B plus

beta minus of A minus of C minus of B.

OK. So there here my state. But now I have written it in a way that I have here A

and C A and C A and C and A and C. So I could decide to measure in this basis.

This is an orthonormal basis for A and C. But it's not a very smart basis because it's

not entangled. So let's go to the entangled base. So let's rewrite this state, this total

state. Nothing has been done yet to the state. We're just mathematically rewriting it,

nothing else. We have this, this, this, and that. And I want you now to use these

formulas to do this. So I'll do this on this blackboard. We'll have to erase those

important names.

So what do we get? Well a little of algebra. Let's do it. A with C plus plus would be

that. So I'll write it with one over square root of 2 becomes one half. A with C would

be psi zero AC plus psi three AC multiplying alpha plus on B. So I took care of the

first term. The alpha is there. The B is there. And AC is there, in which, you know,

you can put any labels you want to here. AB, this is the AB state. The entangled AB

state. We used AC.

Second term plus one half. Now we have plus A minus C. So it's the second line in

there. So it would be psi one AC minus I psi 2 AC beta plus B. Next line, I'll just copy

it, one half. Well not. Alpha minus B and here you'll have the minus plus which is the

same thing, psi 1 AC plus I psi 2 AC.

And the last term is plus one half psi 0 AC minus psi 3 AC. And we get beta minus

B.

OK, almost was there. Let's rewrite this as-- let's collect the psi zeroes, psi 0 and psi

0. You see we're do nothing yet. We're just mathematically rewriting the states in a

different basis, the total states. So it is equal to one half psi 0 AC. and look what you

get here, very curiously. You get alpha plus B plus beta minus B. Very curious, that
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was precisely the state we wanted to teleport. Alpha plus plus beta minus.

All right. Let's see what else happens. Here we get plus one half psi-- which other

one do I want to copy? Psi 1 AC.

You see this is the state we wanted to teleport. It's here. And it sort of has appeared

in the B space. Psi 1 AC, well this time I have this term and this term. So actually it

seems a little different. Now we get beta plus B plus alpha minus B.

Then we go to the next. One half of psi 2 AC. So psi 2 is here. So you get I alpha

minus B minus I beta plus B. OK. Finally linear combinations.

And finally psi 3. What is psi 3? Well two terms also for psi 3. This one and this one.

So you get alpha plus B minus beta minus B. Kind of the end of math by now.

You've proven a funny identity actually in doing this. And maybe this blackboard

should-- to make sure you understand.

This is the calculation of total state. And here we go. So let me show you one thing.

This is actually the state we wanted. So this will be called psi in the B basis, in the B

space. The state that you wanted to teleport that was psi in the C basis, now it's psi

in the B basis.

Those ones look a little funny, but this one actually looks like this thing, looks like

sigma 3 times psi. Because if you have sigma 3 on this state, it gives you a plus 1

here and a minus [INAUDIBLE] value. So that's sigma 3 psi.

This actually has flipped the plus and the minus. So that actually is sigma 1 psi. And

this state is actually sigma 2 psi.

OK everything is in place now. We've just done math, but now comes the physics.

Alice is going to measure in the bell space of A and C.

So these are the four bases states. So she's going to measure in one of these

bases states. And as see measures, she falls and the wave function of her

collapses into one of them. So when she gets the zero basis state, this light blanks.

If doing the measurement on AC, because she has both particles A and C, she gets
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this basis state-- recall the postulate of measurement-- light one blinks. If she gets

the third like 2 and the fourth here.

Suppose the state light zero shines. Well the state collapsed into this. She is now

sitting with psi 0 AC that has no memory whatsoever of the original state C, but B is

sitting with this state, the state we wanted to teleport. So if light zero shines, she

tells Bob, let it go to machine zero where there's no magnetic field, nothing. So

actually the same state goes out.

If she gets psi 1 as the measured state, again no memory in this state about alpha

and beta. But Bob gets sigma 1 psi 1. So he puts it into the first Hamiltonian for a

picosecond, produces a sigma 1. This Hamiltonian, this box I takes a state into

sigma I state. It's a unitary operation. So puts a sigma 1 and gets psi. If light two

shines, goes to the machine two, which produces a sigma 2, and so he gets the

state. Light four shines, the third Hamiltonian, he gets the state. Any of the four

options, he gets the precise state. The state has been teleported. You needed to

send only the information of which light shone, and the state is on the other side of

the ocean.

All right. That's it for today.
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