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PROBLEM 1: DID YOU DO THE READING? (25 points)

(a) (6 points) The primary evidence for dark matter in galaxies comes from mea-
suring their rotation curves, i.e., the orbital velocity v as a function of radius
R. If stars contributed all, or most, of the mass in a galaxy, what would we
expect for the behavior of v(R) at large radii?

Answer: If stars contributed most of the mass, then at large radii the mass
would appear to be concentrated as a spherical lump at the center, and the
orbits of the stars would be “Keplerian,” i.e., orbits in a 1/r2 gravitational
field. Then �F = m�a implies that

1 v2 1
= v .

R2
∝

R
⇒ ∝ √

R

(b) (5 points) What is actually found for the behavior of v(R)?

Answer: v(R) looks nearly flat at large radii.

(c) (7 points) An important tool for estimating the mass in a galaxy is the steady-
state virial theorem. What does this theorem state?

Answer: For a gravitationally bound system in equilibrium,

1
Kinetic energy = − (Gravitational potential energy) .

2

(The equality holds whenever Ï ≈ 0, where I is the moment of inertia.)

(d) (7 points) At the end of Chapter 10, Ryden writes “Thus, the very strong
asymmetry between baryons and antibaryons today and the large number of
photons per baryon are both products of a tiny asymmetry between quarks
and anitquarks in the early universe.” Explain in one or a few sentences how
a tiny asymmetry between quarks and anitquarks in the early universe results
in a strong asymmetry between baryons and antibaryons today.

Answer: When kT was large compared to 150 MeV, the excess of quarks over
antiquarks was tiny: only about 3 extra quarks for every 109 antiquarks. But
there was massive quark-antiquark annihilation as kT fell below 150 MeV, so
that today we see the excess quarks, bound into baryons, and almost no sign
of antiquarks.
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PROBLEM 2: TIME EVOLUTION OF A UNIVERSE WITH MYSTE-
RIOUS STUFF (20 points)

(a) The Friedmann equation in a flat universe is(
ȧ

a

)2 8πG
= ρ.

3

Substituting ρ = const/a5 and taking the square root of both sides gives

ȧ
= αa−5/2 ,

a

for some constant α. Rearranging to a form we can integrate,

da a3/2 = αdt,

and therefore
2
a5/2 = αt.

5
Notice that once again we have eliminated the arbitrary integration constant
by choosing the big bang boundary conditions a = 0 at t = 0. Solving for a
yields

a ∝ t2/5.

(b) The Hubble parameter is, from its definition,

ȧ 2
H = = ,

a 5t

where we have used the time dependence of a(t) that we found in part (a).
(Notice that we don’t need to know the constant of proportionality left unde-
termined in part (a), as it cancels between numerator and denominator in this
calculation.)

(c) Recall that the horizon distance is the physical distance traveled by a light ray
since t = 0,

t c dt′
�p,horizon(t) = a(t)

∫
.

0 a(t′)

Using a(t) ∝ t2/5, we find ∫ t

�p,horizo t) = ct2/5 5
n( dt′ t′−2/

0
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or

� /5

(
5

(t) = ct2 t3/5 5
p,horizon

)
= ct.

3 3

(d) Since we know the Hubble parameter, we can find the mass density ρ(t) easily
from the Friedmann equation,

3H2

ρ(t) = .
8πG

Using the result from part (b), we find

3 1
ρ(t) = .

50πG t2

As a check on our algebra, since we found in (a) that a ∝ t2/5, and knew at
the beginning of the calculation that ρ ∝ a−5, we should find, as we do here,
that ρ ∝ t−2. Notice, however, that in this case we do not leave our answer in
terms of some undetermined constant of proportionality; the units of ρ are not
arbitrary, and therefore we care about its normalization.

PROBLEM 3: ROTATING FRAMES OF REFERENCE (35 points)

(a) The metric was given as

−c2 dτ2 = −c2 dt2 + d 2
r2 + r2 (dφ+ ω dt) + dz2 ,

and the metric coefficients are then

[
just read off from this expressi

]
on:

g11 ≡ grr = 1

g00 ≡ g 2
tt = coefficient of dt2 = −c2 + r ω2

1
g20 ≡ g ≡ g ≡ g = × coefficient of dφ dt = r2 2

02 φt tφ ω
2

g ≡ g = coefficient of dφ2 = r222 φφ

g33 ≡ gzz = coefficient of dz2 = 1 .

Note that the off-diagonal term gφt must be multiplied by 1/2, because the
expression

3 3

µ

∑
=0 ν

∑
gµν dx

µ dxν

=0
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includes the two equal terms g20 dφ dt+ g02 dt dφ, where g20 ≡ g02.

(b) Starting with the general expression

d
dτ

{
dxν

gµν dτ

}
1 dxλ dxσ

= (∂ g
2 µ λσ) ,

dτ dτ

we set µ = r:
d

{
dxν 1 dxλ σ

rν

}
dx

g = (∂rgλσ) .
dτ dτ 2 dτ dτ

When we sum over ν on the left-hand side, the only value for which grν = 0 is
ν = 1 ≡ r. Thus, the left-hand side is simply

d
(

dx1
)

d d
LHS = g

d rr =
τ dτ dτ

(
r

dτ

)
d2r

= .
dτ2

The RHS includes every combination of λ and σ for which gλσ depends on r,
so that ∂r gλσ = 0. This means gtt, gφφ, and gφt. So,

1 2 2

RHS = ∂ (−c2 + r2
φ

ω2 d
)
(
dt

r

)
1 d

+ ∂r(r2)
( )

dφ t
+ ∂r(r2ω)2 dτ 2 dτ dτ dτ

= rω2

(
dt

)2 d 2
φ dφ dt

+ r

(
τ

)
+ 2rω

dτ d dτ dτ(
d d 2
φ t

= r + ω
dτ dτ

)
.

Note that the final term in the first line is really the sum of the contributions
from gφt and gtφ, where the two terms were combined to cancel the factor of
1/2 in the general expression. Finally,

d2r
= r

(
dφ d 2

t
+ ω

dτ2 dτ dτ

)
.

If one expands the RHS as

d2
(
d

)2 d 2
r φ t dφ dt
= r + rω2

dτ2 dτ

(
dτ

)
+ 2rω ,

dτ dτ

then one can identify the term proportional to ω2 as the centrifugal force, and
the term proportional to ω as the Coriolis force.

�

�
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(c) Substituting µ = φ,

d dxν 1 dxλ dxσ

g = (∂ g ) .
d φν
τ

{
d

}
2 φ λσ

τ dτ dτ

But none of the metric coefficients depend on φ, so the right-hand side is zero.
The left-hand side receives contributions from ν = φ and ν = t:

d
dτ

(
dφ dt

gφφ + gφt

)
d

=
(

+ r2
d

r2
dφ t

ω

)
= 0 ,

dτ dτ dτ dτ dτ

so

d
(

d
r2

dφ t
+ r2ω

dτ dτ dτ

)
= 0 .

Note that one cannot “factor out” r2, since r can depend on τ . If this equation
is expanded to give an equation for d2φ/dτ2, the term proportional to ω would
be identified as the Coriolis force. There is no term proportional to ω2, since
the centrifugal force has no component in the φ direction.

(d) If Eq. (P3.1) of the problem is divided by c2dt2, one obtains

(
dτ
dt

)2 1
= 1−

c2

[(
dr
dt

)2

+ r2
(
dφ

+ ω
dt

)2

+
(
dz
dt

)2
]
.

Then using
dt 1

=
dτ

(
dτ
dt

) ,

one has

dt 1
=

dτ
√√ .[

2√ 1√1−
(
dr

)2 dφ d 2
z

+ r2 ω
dt

(
+

c2 dt

)
+

(
dt

) ]

Note that this equation is really just

dt 1
= ,

dτ 1− v2/c2

adapted to the rotating cylindrical co

√
ordinate system.
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PROBLEM 4: PRESSURE AND ENERGY DENSITY OF IMAGI-
NARY STUFF (20 points)

(a) If the energy density u as a function of the volume V satisfies u(V )
th

∝ 1/V 3/2,
en one can write

3/2
V

u(V +∆V ) = u0

(
V +∆V

)
.

(The above expression is proportional to 1/(V +∆V )3/2, and reduces to u = u0

when ∆V = 0.) Expanding to first order in ∆V ,

u
u(V +∆V ) = 0 u 3 ∆V

= 0 = 1 u .( 2 0

1 +
3/2 3 ∆V∆V 1 + 2 VV

(
−

V

)

The total energy is the volume t

)
imes the energy density, so the total energy U

after the piston is pulled out is given by

U = [V +∆V ] u(V +∆V )(
∆V 3

= V 1 +
V

) (
∆V

1−
2 V

)
u0

=
(

1 ∆V
1− U

2 V

)
0 ,

where U0 ≡ V u0 is the total energy before the piston is pulled out. Then

1 ∆V
∆U ≡ U − U0 = − U

2 0 .
V

(b) The work done by the agent must be the negative of the work done by the gas,
which is p∆V . So

∆W = −p∆V .

(c) The agent must supply the full change in energy, so

1 ∆V
∆W = ∆U = − U

2 0 .
V

Combining this with the expression for ∆W from part (b), one sees immediately
that

1 U
p = 0 1

= u
2 V 2 0 .
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